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1. Introduction

Liver fibrosis results from chronic damage to the 
liver and accumulation of extracellular matrix (ECM) 
proteins, which is a characteristic of most types of 

chronic liver diseases (1). There is compelling evidence 
of hepatic cellular recovery with possible remodeling 
of scar tissue (2). Oxidative stress has been identified 
as a key mechanism of fibrogenesis. Upon activation of 
kupffer cells, they secrete inflammatory and fibrogenic 
mediators. These mediators along with reactive oxygen 
species (ROS) activates hepatic stellate cells (HSCs) 
(3). NADPH oxidase (NOX) enzymes is indeed a main 
source of oxidative stress in hepatocytes and non-
hepatocytes (4). They consist of seven transmembrane 
proteins (NOXs 1 to 5 and Duox 1 and 2), whose 
primary function is to catalyze the transfer of electrons 
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from NADPH to O2 generating superoxide and 
hydrogen peroxide (5). Evidence indicates a crucial 
role for NOX-mediated ROS generation in hepatic 
fibrogenesis (6,7).
 Apocynin, isolated from Picrorhiza kurroa extracts, 
is a NOX inhibitor that was shown to interfere with 
membrane assembly of cytosolic subunits of the NOX 
complex. Apocynin reduced the expression of gp91phox 
(a NOX subunit), where it replenished cellular NADPH 
leading to alleviated hepatic oxidative injury, which 
may underlie its therapeutic potency (8). Besides, alpha-
lipoic acid (α-LA) was shown to possess a beneficial 
role in chronic liver diseases. This is mediated via its 
anti-inflammatory and antioxidant activities that inhibit 
the activation of HSCs (9). Moreover, administration of 
apocynin markedly enhanced the neuroprotection effect 
of α-LA in a rat model of ischemia/reperfusion injury, a 
finding that may reflect the promising beneficial effect 
of using the two drugs together (10).
 Accordingly, the present study was attempted to 
provide an update on the hepatoprotective effects and 
the undisclosed antifibrotic mechanisms of apocynin, 
α-LA and their combination against concanavalin A 
(ConA)-induced liver fibrosis in rats. This model is 
considered as a murine model of autoimmune hepatitis 
(T-cell mediated) that resembles the pathological 
changes accompanying autoimmune and viral hepatitis 
in human. Also, this study aimed to assess the potential 
role that NOX-1 and NOX-4 might play in the 
pathogenesis of ConA-induced liver injury.

2. Materials and Methods

2.1. Drugs and chemicals

ConA, apocynin and α-LA were purchased from 
Sigma-Aldrich Chemicals Co. (St. Louis, MO, USA). 
Dimethyl sulfoxide (DMSO) and formaldehyde (37%) 
were purchased from El-Gomhouria Chemical Co. 
(Cairo, Egypt). All other chemicals and solvents were 
of highest grade commercially available.

2.2. Animals

The study protocol was conducted according to the 
ethical guidelines (Faculty of Pharmacy, Ain Shams 
University, Egypt). Male Wistar rats (150-200 g) 
were obtained from Nile Co. for Pharmaceutical and 
Chemical Industries, Egypt. Rats were housed in an air-
conditioned atmosphere, at a temperature of 25°C with 
alternatively 12 h light and dark cycles. Animals were 
acclimated for 2 weeks before experimentation and kept 
on a standard diet and water ad libitum.

2.3. Experimental design

Rats were divided into 7 groups (n = 15) and treated 

for 6 consecutive weeks. Group 1 received phosphate 
buffered saline (PBS) (once/week, i.v.) and DMSO 
(3 times/week, i.p.). Groups 2 and 3 received only 
apocynin or α-LA, respectively (50 mg/kg, dissolved 
in DMSO, 3 times/week, i.p.). The doses of apocynin 
and α-LA were chosen as a result of a pilot study in our 
lab. Group 4 received ConA (20 mg/kg, dissolved in 
PBS, once/week, i.v.). Group 5, 6 and 7 received ConA 
together with apocynin, α-LA or both, respectively.
At the end of the 6 weeks, blood samples were 
collected from the retro-orbital plexus and allowed to 
clot. Serum was separated by centrifugation at 1,000 
g for 10 min and used for the assessment of liver 
functions and insulin level. Then, rats were sacrificed, 
and liver tissues were dissected, weighed and washed 
with ice-cold saline. Specimens from the three major 
lobes of each liver from the different treatment groups 
were fixed in formalin 10% for histopathological 
examination and detection of fibrosis markers; Masson's 
trichrome staining, alpha-smooth muscle actin (α-SMA) 
and transforming growth factor-beta1 (TGF-β1). Other 
liver specimens were homogenized in ice-cold saline 
and the homogenate was used to assess oxidative stress 
markers; reduced glutathione (GSH) and lipid peroxides 
(MDA), antioxidant enzymes; superoxide dismutase 
(SOD) and catalase (CAT), inflammatory makers; 
nuclear factor kappa b (NF-κB), interleukin-6 (IL-6) 
and tumor necrosis factor-alpha (TNF-α) and mRNA 
expression of NOX-1 and NOX-4.

2.3.1. Assessment of hepatotoxicity indices

Alanine aminotransferase (ALT) and aspartate 
aminotransferase (AST) were determined according to 
the method of Reitman and Frankel (11). Serum levels 
of total bilirubin, total cholesterol (TC), triglycerides 
(TG) and albumin were estimated using available 
commercial kits (Spectrum diagnostics, Cairo, Egypt). 
Liver index was calculated according to the formula: 
(liver weight/body weight) × 100.

2.3.2. Histopathological examination

Autopsy samples were fixed in 10% forlmalin for 
24 h. Paraffin bees wax tissue blocks were prepared 
for sectioning at 4 μm thickness. The obtained tissue 
sections were collected on glass slides, deparaffinized, 
stained by hematoxylin and eosin stain (12).

2.3.3. Assessment of oxidative stress markers and 
antioxidant enzymes

GSH and MDA content were determined according to 
the methods of Ellman (13) and Mihara and Uchiyama 
(14), respectively. The activities of SOD and CAT were 
determined using the methods of Nishikimi, Appaji Rao 
(15) and Aebi (16), respectively.
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94°C for 1 min, 60°C for 1 min, and 72°C for 1 min. 
The mRNA expression of NOX-1 and NOX-4 was 
calculated based on the method of 2−(ΔΔCt), where Ct is 
cycle threshold. The primers were as follows: NOX-
1 forward: 5′AACAACAGCACTCACCAATG3′, 
reverse: 5′TCAAGAAGGAAGCAAAGGG3′, NOX-4 
forward: 5′TCAACTGCAGCCTGATCCTTT3′, reverse: 
5′CTGTGATCCGCGAAGGTAAG3′ and β-actin 
forward: 5′CCCAGCACAATGAAGATCAAGATCAT3′, 
reverse: 5′ATCTGCTGGAAGGTGGACAGCGA3′.

2.4. Statistical analysis

Data are presented as mean ± S.D. Multiple comparisons 
were performed using one-way ANOVA followed by 
Tukey-Kramer as a post-hoc test, as appropriate. The 
0.05 level of probability was used as the criterion for 
significance. All statistical analyses and graphs were 
performed using GraphPad Prism (ISI® software, USA) 
version 5 software

3. Results

3.1. Hepatotoxicity indices

ConA intoxication significantly increased the levels of 
ALT and AST by 161 and 140%, respectively, when 
compared to the control group. In contrast, co-treatment 
with both apocynin and α-LA significantly lowered the 
levels of ALT and AST by 59 and 52%, respectively, 
when compared to the ConA group. Also, ConA induced 
a significant decrease in albumin level by 34% and a 
significant increase in the levels of total bilirubin, TC, 
TG as well as the liver index by 269, 88 and 174 and 
38%, respectively, as compared to the control group. 
Interestingly, the combination group showed a more 
pronounced increase in albumin level by 44% and a 
significant decrease in the serum levels of total bilirubin, 
TC, TG as well as the liver index accounting for 68, 43 
and 56 and 27%, respectively, as compared to the ConA 
group (Table 1).

2.3.4. Assessment of inflammatory markers and insulin

Determination of IL-6, TNF-α, NF-κB and insulin 
levels were performed using commercial rat ELISA 
kits (Immuno-Biological Laboratories, Minnesota, 
USA), (RayBiotech, Inc., Norcross, Georgia, USA), 
(Cloud-Clone Corp., Texas, USA) and (Société de 
Pharmacologie et d'Immunologie-BIO, Montigny-le-
Bretonneux, France), respectively, according to the 
manufacturer's instructions.

2.3.5. Assessment of liver fibrosis

Liver fibrosis was evaluated using Masson's trichrome 
stain and by measuring the hydroxyproline content 
according to the method of Reddy and Enwemeka (17). 
Liver content of α-SMA and TGF-β1 were examined 
immunohistochemically with the following primary 
antibodies; mouse monoclonal to rat α-SMA (A2547, 
Sigma-Aldrich Chemical Co., St Louis, MO, USA) and 
mouse monoclonal to rat TGF-β1 (T0438, Sigma-Aldrich 
Chemical Co., St Louis, MO, USA). The images were 
then quantified by using image analysis software (Image J, 
1.46a, NIH, USA), and represented as the area percentage 
of the immunopositive reaction per field (×400).

2.3.6. Assessment of NOX-1 and NOX-4 mRNA 
expression

NOX-1 and NOX-4 mRNA expression were estimated 
by quantitative real-time polymerase chain reaction 
(qRT-PCR). For RNA extraction, total RNA from liver 
tissue was extracted using the QIAzol and RNeasy 
mini kit (QIAGEN, California, USA), as recommended 
by the manufacturer. RNA samples were then reverse 
transcribed and processed for PCRs. The primers of 
NOX-1, NOX-4 and the internal control β-actin were 
designed and synthesized by Invitrogen, USA. qRT-
PCR was performed using the Applied Biosystems 7500 
RT-PCR system. PCR samples were activated at 94°C 
for 10 min followed 35 cycles that were performed at 

Table 1. Effects of treatment with 50 mg/kg apocynin and/or 50 mg/kg α-LA on liver function tests in ConA-induced liver 
injury in rats

Treated group

Control
Apocynin
α-LA
ConA
ConA + Apocynin
ConA + α-LA
ConA + Apocynin
+ α-LA

    Liver index 
           (%)

    3.6b ± 0.29
    3.4b ± 0.13
    3.7b ± 0.46
  4.9a,c ± 0.29
       4b ± 0.17
4.2a,b,c ± 0.33
    3.6b ± 0.23

        ALT 
       (IU/L)

  27.4b ± 5.7
  24.6b ± 6.5
  29.7b ± 4.1
71.4a,c ± 4.9
  35.4b ± 11.2
  39.5b ± 8.0
  29.5b ± 7.3

Data are presented as means ± S.D. (n = 15). a, b and c: Significantly different from control, ConA and ConA + apocynin + α-LA group, respectively, 
at p < 0.05 using ANOVA followed by Tukey-Kramer as a post-hoc test. AST, aspartate aminotransferase; ALT, alanine aminotransferase; TC, total 
cholesterol; TG, triglycerides.

         AST 
        (IU/L)

  107.7b ± 17.5
  104.2b ± 11.1
  108.7b ± 35.0
258.7a,c ± 60.1
  159.2b ± 23.9
  164.7b ± 44.1
  124.4b ± 36.5

Total bilirubin
     (mg/dL)

  0.22b ± 0.06
  0.20b ± 0.06
  0.22b ± 0.05
0.83a,c ± 0.15
  0.40b ± 0.19
  0.39b ± 0.15
  0.26b ± 0.07

    Albumin 
       (g/dL)

   4.33b ± 0.63
   4.33b ± 0.50
   4.18b ± 0.33
 2.85a,c ± 0.56
   3.98b ± 1.13
    3.89 ± 0.33
   4.11b ± 0.29

        TC 
     (mg/dL)   

   57.2b ± 8.70
    61.7b ± 21.3
     81.1 ± 9.60
107.7a,c ± 25.7
    62.8b ± 8.70
  96.8a,c ± 19.5
    61.1b ± 7.50

          TG 
       (mg/dl)

    37.4b ± 14.3
    22.8b ± 7.20
    24.7b ± 6.10
102.7a,c ± 23.5
    37.1b ± 14.2
    44.6b ± 4.20
    45.6b ± 12.8



www.ddtjournal.com

Drug Discoveries & Therapeutics. 2018; 12(2):58-67.61

3.2. Histopathological examination

Liver sections from the control, apocynin or α-LA groups 
showed normal hepatic architecture (Figures 1A, 1B and 
1C). Chronic intoxication with ConA induced fibroblastic 
cells proliferation with infiltrated inflammatory and 
kupffer cells in the portal area (Figures 1D and 1E). 
However, liver specimens from rats treated with ConA 
and either apocynin or α-LA showed improvements 
in the histopathological changes (Figures 1F and 1G). 
Interestingly, co-treatment with both apocynin and α-LA 
preserved the normal architecture of hepatic parenchyma 
(Figure 1H).

3.3. Oxidative stress markers and antioxidant enzymes 

As expected, ConA-intoxicated rats showed significantly 
reduced content of GSH by 84% and elevation of MDA 
by 148%, as compared to the control group. Co-treatment 
of animals with both apocynin and α-LA produced 
further improvement in oxidative stress markers than 
any of them alone, where GSH content was significantly 
increased by 226% and MDA level was reduced by 38% 
compared to ConA group (Table 2). In addition, ConA-
intoxicated group showed a significant decrease in SOD 
and CAT activities by 85%, as compared to the control 
group. Remarkably, the combination of the two drugs 
resulted in a significant increase in the activity of SOD 
by 38% with respect to the apocynin only-treated group. 
Furthermore, this group showed a significant increase 
in the activities of SOD and CAT accounting to 82 and 
64%, respectively, with respect to the α-LA only-treated 
group (Table 2). 

3.4. Inflammatory markers

It was found that the group injected with ConA 
showed about 5-fold increase in TNF-α and IL-6, as 
compared to the control group. In contrast, co-treatment 
with both apocynin and α-LA revealed significantly 
lowered expression of TNF-α and IL-6 by 73 and 80%, 

Table 2. Effects of treatment with 50 mg/kg apocynin and/or 50 mg/kg α-LA on oxidative stress markers and antioxidant 
enzymes in ConA-induced liver injury in rats

Treated group

Control
Apocynin
α-LA
ConA
ConA + Apocynin
ConA + α-LA
ConA + Apocynin + α-LA

GSH (μmol/g tissue)

    4.0b,c ± 0.2
    3.8b,c ± 0.2
  3.3a,b,c ± 0.2
    0.6a,c ± 0.1
  1.5a,b,c ± 0.1
  1.2a,b,c ± 0.1
    2.1a,b ± 0.1

Data are presented as means ± S.D. (n = 15). a, b and c: Significantly different from control, ConA and ConA + apocynin + α-LA group, respectively, 
at p < 0.05 using ANOVA followed by Tukey-Kramer as a post-hoc test. GSH, reduced glutathione; MDA, lipid peroxides; SOD, superoxide 
dismutase; CAT, catalase. 

MDA (nmol/g tissue)

    54.6b,c ± 11.3
    55.3b,c ± 9.3
    62.8b,c ± 4.5
   135.3a,c ± 15.8
   102.8a,b ± 12.1
   120.1a,c ± 14.7
     84.2a,b ± 8.5

SOD (U/g tissue)

  13.2b,c ± 0.5
  12.2b,c ± 0.8
   9.9a,b,c ± 0.7
     2.0a,c ± 0.2
   4.2a,b,c ± 0.3
     3.1a,c ± 0.2
     5.8a,b ± 0.4

CAT (U/g tissue)

 13.5b,c ± 0.6
 12.7b,c ± 1.2
 11.3b,c ± 1.7
    1.9a,c ± 0.1
    5.2a,b ± 0.4
    4.1a,c ± 0.2
    6.7a,b ± 0.4

Figure 1. Representative photomicrographs of liver sections 
stained with haematoxylin and eosin (×400). A, B and C: 
Sections taken from the livers of rats in control, apocynin or 
α-LA, respectively, showing normal histological structure 
of the central vein (CV) and surrounding hepatocytes (h). 
D: Section taken from a liver of a rat intoxicated with ConA 
shows severe dilatation and congestion of the portal vein (PV) 
with fibrosis (f) and inflammatory cells infiltration (m) in 
the portal area surrounding the bile duct and diffused kupffer 
cells proliferation (arrow) in between the hepatocytes. E: 
Magnification at (×640) of the section of the liver shown in D. F: 
Section taken from the liver of a rat pretreated with apocynin 
showing few inflammatory cells infiltration (m) in the portal 
area (pa) with fatty changes (*) in few hepatocytes. G: Section 
taken from a liver of a rat pretreated with α-LA shows few 
fiboblastic cells (f) proliferation in the portal area. H: Section 
taken from a liver of a rat co-treated with both apocynin and 
α-LA showing few inflammatory cells infiltration (m) in the 
portal area surrounding the bile duct.
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respectively, as compared to the ConA group, which 
was more significant than that found in either apocynin 
or α-LA only-pretreated groups (Figure 2). Moreover, 
ConA-intoxicated group showed a significant increase 
in NF-κB by 146%, as compared to the control group. 
Remarkably, co-treatment with apocynin and α-LA 
revealed a significant decrease in NF-κB by 19% with 
respect to ConA group (Figure 2). 

3.5. Insulin level 

ConA injection showed a significant increase in serum 
insulin level by 9.5-fold, when compared to the control 

rats. Considering co-treatment with both apocynin and 
α-LA, serum insulin level was reduced as compared to 
ConA-intoxicated group (by 81%) or the groups treated 
with either apocynin (by 49%) or α-LA (by 67%) (Figure 
2). 

3.6. Liver fibrosis markers 

Masson's trichrome stain showed that collagen fibers 
were not demarcated around the classical hepatic lobules 
in liver sections from the control, apocynin or α-LA only-
treated groups (Figures 3A, 3B, and 3C). In contrast, 
the collagen fibers were heavily deposited in sections 

Figure 2. Effect of treatment with 50 mg/kg apocynin and/or 50 mg/kg α-LA on TNF-α, IL-6 and NF-κB tissue levels as well 
as serum insulin level in ConA-induced liver fibrosis in rats. Values are given as mean ± S.D. TNF-α, IL-6 and insulin (n = 15), 
NF-κB (n = 6). a, b or c: Significantly different from the control, ConA or ConA + apocynin + α-LA group, respectively, at p < 
0.05 using ANOVA followed by Tukey-Kramer as a post-hoc test. TNF-α, tumor necrosis factor-alpha; IL-6, interleukin-6; NF-κB, 
nuclear factor kappa b.

Figure 3. Representative photomicrographs of liver sections stained by Masson's trichrome (×400). A, B and C: Sections 
obtained from livers of rats in control, apocynin or α-LA, respectively, showing normal histological structure in the portal area with 
minimal collagen deposition. D: Section taken from a liver of a rat intoxicated with ConA showing severe congestion in the portal 
vein and excessive collagen fibers deposition along with pseudolobules formation in the portal area. E: Section taken from the liver 
of a rat pretreated with apocynin showing nearly an absence of pseudolobules with less collagen deposition. F: Section taken from 
a liver of a rat pretreated with α-LA shows few fibroblastic cells proliferation in the portal area along with some collagen fibers 
deposition. G: Section taken from a liver of rats co-treated with both apocynin and α-LA showing an absence of pseudolobules and 
minimal collagen fibers deposition. H: Liver hydroxyproline content in different groups. Values are given as mean ±S.D. (n = 6). 
a, b or c: Significantly different from the control, ConA or ConA + apocynin + α-LA group, respectively, at p < 0.05 using ANOVA 
followed by Tukey-Kramer as a post-hoc test.
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taken from ConA-intoxicated group (Figure 3D), while 
α-LA pretreated group showed moderate collagen fibers 
deposition (Figure 3F). Remarkably, pretreatment with 
either apocynin alone or along with α-LA markedly 
counteracted these changes (Figures 3E and 3G). As 
expected, ConA-intoxicated rats showed significantly 
increased hydroxyproline content by 185%, as compared 
to the control group. Co-treatment of animals with both 
apocynin and α-LA revealed reduction in hydroxyproline 
content by 41%, compared to ConA group (Figure 3H). 
 Immunohistochemical staining revealed minimal 
α-SMA and TGF-β1 expression in the liver sections from 
the control, apocynin or α-LA only-treated rats (Figures 
4A, 4B, and 4C). However, ConA-intoxicated group 
showed significantly raised expression of α-SMA and 
TGF-β1 by about 4 and 3-fold, respectively, as compared 
to the control (Figure 4D). Compared with ConA 
intoxicated group, liver sections of rats pretreated with 
apocynin alone, α-LA alone or both of them showed a 
marked reduction in α-SMA expression by about 68, 62 
and 77%, respectively, as well as a reduction in TGF-β1 
expression by about 68 and 64 and 75%, respectively 
(Figures 4E, 4F, and 4G). Figure 4H represents the 
percentage of area of immunopositive reaction.

3.7. NOX-1 and NOX-4 gene expression

NOX-1 and NOX-4 mRNA tissue expression showed 
about 7.5 and 8-fold increase, respectively, in ConA-
injected group, as compared to the control. While in the 
combination group, NOX-1 and NOX-4 mRNA tissue 
expression were significantly lowered by 59 and 78%, 
respectively, when compared to the group intoxicated 
with ConA, which was also more significant than either 
apocynin or α-LA only-pretreated groups (Figure 5). 

4. Discussion

The ConA model is a typical and well established one 
for investigating T-cell and macrophage dependent 
liver injury in rodents, which closely resembles the 
pathogenesis mechanisms of viral and autoimmune 
hepatitis in humans. ConA is purified from Canavalia 
brasiliensis, after it's i.v. injection, hepatic CD4+ T-cells 
recognize the ConA-modified major histocompatibility 
complex structures of kupffer cells and become 
activated, followed by the release of inflammatory 
mediators in the blood (18). 
 Injection of ConA for six consecutive weeks was 

Figure 4. Expression of α-SMA and TGF-β1 antigens by immunohistochemical staining (×400). A, B and C: Sections of 
livers obtained from rats in control, apocynin or α-LA, respectively, shows that α-SMA and TGF-β1 antigens were minimally 
detected in the walls of the central vein. D: Sections taken from livers of rats intoxicated with ConA shows extensive α-SMA and 
TGF-β1 expression (brown color). E: Sections taken from livers of rats pretreated with apocynin showing mild α-SMA and TGF-β1 
expression. F: Sections taken from livers of rats pretreated with α-LA shows moderate expression of α-SMA and mild expression 
of TGF-β1. G: Sections taken from livers of rats co-treated with both apocynin and α-LA showing limited α-SMA and TGF-β1 
expression (brown color). H: Quantitative image analysis expressed as percentage of area of immunopositive reaction. Values 
are given as mean ±S.D. (n = 10). a, b or c: Significantly different from the control, ConA or ConA + apocynin + α-LA group, 
respectively, at p < 0.05 using ANOVA followed by Tukey-Kramer as a post-hoc test. α-SMA, alpha-smooth muscle actin; TGF-β1, 
transforming growth factor-beta1.
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found to significantly increase serum ALT and AST 
levels that is attributed to increased enzymes release 
from damaged liver parenchymal cells into the blood 
stream (19). Meanwhile, serum levels of TC, TG and 
total bilirubin were significantly increased in ConA-
intoxicated group, while albumin level was significantly 
reduced. Pretreatment of apocynin along with ConA 
significantly ameliorated these changes. In this context, 
the hepatoprotective effects of apocynin in a rat model 
of diet-induced hypercholesterolaemia were reported 
by a previous study (8). Interestingly, the group co-
treated with both apocynin and α-LA showed a more 
pronounced hepatoprotective effect as compared to 
that treated with apocynin alone. Beside hepatotoxicity 
indices; histopathological examination revealed 
severe inflammatory cells infiltration as well as severe 
fibrosis in the portal area induced by ConA which is in 
accordance with previous studies (20,21). Remarkably, 
the combination of apocynin and α-LA preserved 
normal liver tissue architecture with few inflammatory 
cells infiltration. 
 Liver fibrosis is characterized by both quantitative 
and qualitative alteration of hepatic ECM, as a 
consequence of HSCs activation towards myofibroblast-
like cells. This is characterized by increased liver 
content of α-SMA as a marker for activated HSCs, 
and accumulation of ECM mainly collagen, which is 
stimulated by the multifactorial growth factor TGF-β 
(22). In the present study, histopathological examination 
of collagen fibers using Masson's trichrome stain 
revealed severe fibroblastic cells proliferation in liver 
samples of ConA intoxicated group as well as elevated 
hydroxyproline content. It is known that hydroxyproline 
is the main characteristic compound in collagen that 
indicates increased de novo synthesis of liver collagen 
(23). Nil fibroblastic cells proliferation was obvious in 
the liver tissues isolated from rats pretreated with either 

apocynin alone or together with α-LA. These findings 
were further confirmed by the decreased content of 
hydroxyproline within the same groups. 
 Furthermore, the distribution of α-SMA and TGF-β1 
positive hepatic cells were significantly upregulated 
in the ConA-injected group. Moreover, α-SMA has 
been directly related to experimental liver fibrogenesis 
(24). Also, the ongoing inflammation in the liver is 
associated with the formation of the profibrogenic 
cytokine TGF-β1 (25) that has been shown to regulate 
multiple fundamental cellular processes, including 
cell growth, migration, adhesion, ECM deposition 
and apoptosis (26,27). The increased α-SMA and 
TGF-β1 expression was counteracted by pretreatment 
with either apocynin or α-LA, however, co-treatment 
with apocynin and α-LA showed a further significant 
reduction of α-SMA and TGF-β1 expression. Indeed, 
α-LA reduced them in experimental models of hepatic 
fibrosis in rodents induced by and dimethylnitrosamine 
(28) and bile duct ligation (29).
 The next step was to explore the mechanism 
underlying the hepatoprotective and antifibrotic effects 
of apocynin and α-LA in combination. More evidence 
links oxidative stress involvement in ConA-induced 
liver injury (30,31), where SOD, GSH and CAT 
protects against the deleterious effects of ROS (32,33), 
while MDA is used as an indicator of cellular oxidation 
status (34). In the present study, ConA significantly 
lowered the liver tissue content of GSH and activities 
of SOD and CAT while it induced a significant increase 
in liver MDA content. These results are in accordance 
with previous studies (22,35). Apocynin pretreatment 
significantly counteracted ConA-induced oxidative 
stress in accordance with earlier studies performed 
in the heart and vascular tissue of rats (36,37). 
Paradoxically, pretreatment with α-LA significantly 
increased only the content of GSH. Meanwhile, co-

Figure 5. Effect of treatment with 50 mg/kg apocynin and/or 50 mg/kg α-LA on NOX-1 and NOX-4 mRNA expression in 
ConA-induced liver fibrosis in rats. Values are given as mean ± S.D. (n = 15). a, b or c: Significantly different from the control, 
ConA or ConA + apocynin + α-LA group, respectively, at p < 0.05 using ANOVA followed by Tukey-Kramer as a post-hoc test. 
NOX-1, NADPH oxidase-1; NOX-4, NADPH oxidase-4.
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treatment with apocynin and α-LA along with ConA 
proved to be the most effective in significantly 
counteracting the changes occurring in the assessed 
oxidative stress markers. 
 T-cell activation elicited by ConA resulted in the 
elevation of the cytokines TNF-α and IL-6, which 
play critical roles in the development of ConA-
induced hepatic injury (38,39). Furthermore, TNF-α 
stimulates the release of cytokines and promotes 
oxidative stress causing liver damage (40). Indeed, 
NF-κB is crucial during hepatic fibrogenesis through 
regulating hepatocyte injury, inflammatory signals and 
fibrogenic responses in HSCs (41). NF-κB activation 
in response to liver injury results in production and 
secretion of proinflammatory cytokines such as TNF-α 
and IL-6 (42). Pretreatment with apocynin succeeded 
in significantly decreasing the serum levels of TNF-α 
and IL-6 induced by ConA intoxication. The anti-
inflammatory activity of apocynin was supported by 
previous studies conducted on rodents (43,44). Also, 
α-LA pretreatment with ConA produced a significant 
reduction of TNF-α and IL-6, which coincides with 
previous studies on different models of liver injury in 
rats (45,46). Once again concomitant treatment with 
apocynin and α-LA led to a further significant decrease 
in the serum levels of TNF-α and IL-6.
 In addition, Fartoux et al. (47) demonstrated that 
insulin resistance and increased circulating insulin is 
a cause rather than a consequence of liver fibrosis. 
Moreover, antioxidants can alleviate insulin resistance 
through ROS-scavenging activity (48). Further, 
Sukumar, Viswambharan (49) identified a NOX 
enzyme as a contributor in insulin resistance-mediated 
oxidative stress and postulated that its pharmacological 
inhibition may possess a novel therapeutic target in 
insulin resistance-related diseases. In this context, 
rats injected with ConA showed a significant serum 
hyperinsulinemia in accordance with Francisco-
DoPrado, Zambelli (50). Pretreatment with either 
apocynin or α-LA significantly counteracted the effect 
of ConA on serum insulin. Earlier studies have reported 
the effect of apocynin on insulin in a rat model (48). 
Interestingly, co-treatment with both apocynin and 
α-LA almost restored the normal level of insulin being 
significantly lower than the groups treated with ConA 
only or along with apocynin or α-LA.
 Finally, we tried to explore the possible role of 
NOXs in ConA-induced liver hepatitis. It was found 
that, a significant elevation of liver NOX-1 and NOX-4 
gene expression after ConA administration was evident. 
Thus, NOX enzymes could play a role in ConA induced 
liver injury. TGF-β in fetal rat hepatocytes was shown 
to generate ROS through activation of NOX enzymes 
and down-regulation of antioxidant genes (51). This 
was found to be coincident with the increase in Rac-1 
protein level, a well-known activator of NOX-1 (52). 
As a NOX inhibitor, apocynin pretreatment resulted in 

a significant reduction of NOX-1 and NOX-4 mRNA 
expression. This protective effect of apocynin coincides 
with a previous experiment conducted on rat hepatoma 
cells (53). Also, pretreatment with α-LA reduced NOX-
1 and NOX-4 expression, which was in agreement with 
a previous study where α-LA inhibited the activation of 
NOX and thus, reduced ROS production in H. pylori-
infected gastric adenocarcinoma AGS cells (54). The 
combining treatment of apocynin and α-LA along with 
ConA in the present study significantly reduced NOX-1 
and NOX-4 expression compared to any of the singly-
pretreated groups.
 Collectively, this study highlights the crucial role 
that NOX enzymes play in the pathogenesis of ConA-
induced liver fibrosis. It was also shown that using 
apocynin and α-LA in combination possess a marked 
antifibrotic effect. This was attributed to the reduction 
of NOX enzymes in liver tissue, therefore, limiting the 
production of free radicals, inflammation, insulin and 
subsequent chronic hepatic fibrosis.
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