Drug Discoveries & Therapeutics is a peer-reviewed international journal published bimonthly by Shandong University China-Japan Cooperation Center for Drug Discovery & Screen (SDU-DDSC) and International Advancement Center for Medicine & Health Research Co., Ltd. (IACMHR Co., Ltd.).

Drug Discoveries & Therapeutics mainly publishes articles related to basic and clinical pharmaceutical research such as pharmaceutical and therapeutical chemistry, pharmacology, pharmacy, pharmacokinetics, industrial pharmacy, pharmaceutical manufacturing, pharmaceutical technology, drug delivery, toxicology, and traditional herb medicine. Studies on drug-related fields such as biology, biochemistry, physiology, microbiology, and immunology are also within the scope of this journal.

Subject Coverage: Basic and clinical pharmaceutical research including Pharmaceutical and therapeutical chemistry, Pharmacology, Pharmacy, Pharmacokinetics, Industrial pharmacy, Pharmaceutical manufacturing, Pharmaceutical technology, Drug delivery, Toxicology, and Traditional herb medicine.

Language: English
Issues/Year: 6
Published by: IACMHR and SDU-DDSC
ISSN: 1881-7831 (Online ISSN 1881-784X)

Editorial and Head Office
Wei TANG, MD PhD
Secretary-in-General
TSUIN-IKIZAKA 410
2-17-5 Hongo, Bunkyo-ku
Tokyo 113-0033, Japan
Tel: 03-5840-9697
Fax: 03-5840-9698
E-mail: office@ddtjournal.com
URL: www.ddtjournal.com

www.ddtjournal.com
Drug Discoveries & Therapeutics

Editorial Board

Editor-in-Chief:
Kazuhisa SEKIMIZU (The University of Tokyo, Tokyo, Japan)

Associate Editor:
Norihiro KOKUDO (The University of Tokyo, Tokyo, Japan)

Secretary-in-General:
Wei TANG (The University of Tokyo, Tokyo, Japan)

Office Manager:
Munehiro NAKATA (Tokai University, Kanagawa, Japan)

Web Editor:
Yu CHEN (The University of Tokyo, Tokyo, Japan)

English Editor:
Curtis BENTLEY (Roswell, GA, USA)

China Office:
Wenfang XU (Shandong University, Shandong, China)

Editors:

Yoshihiro ARAKAWA (Tokyo, Japan)
Santad CHANPRAPAPH (Bangkok, Thailand)
Fen Er CHEN (Shanghai, China)
Zilin CHEN (Wuhan, China)
Guanhua DU (Beijing, China)
Chandradhar DWIVEDI (Brookings, SD, USA)
Mohamed F. EL-MILIGI (Cairo, Egypt)
Harald HAMACHER (Tuebingen, Germany)
Hiroshi HAMAMOTO (Tokyo, Japan)
Xiao-Jiang HAO (Kunming, China)
Langchong HE (Xi'an, China)
David A. HORNE (Duarte, CA, USA)
Yongzhou HU (Hangzhou, China)
Wei HUANG (Shanghai, China)
Yu HUANG (Hong Kong, China)
Hans E. JUNGINGER (Phitsanulok, Thailand)
Toshiaki KATADA (Tokyo, Japan)
Ibrahim S. KHATTAB (Safat, Kuwait)
Hiromichi KIMURA (Tokyo, Japan)
Shiroh KISHIOKA (Wakayama, Japan)
Kam Ming KO (Hong Kong, China)
Nobuyuki KOBAYASHI (Nagasaki, Japan)
Toshiro KONISHI (Tokyo, Japan)
Masahiro KUROYANAGI (Hiroshima, Japan)
Chun Guang LI (Victoria, Australia)
Hongmin LIU (Zhengzhou, China)
Ji-Kai LIU (Kunming, China)
Hongxiang LOU (Jinan, China)
Ken-ichi MAFUNE (Tokyo, Japan)
Norio MATSUKI (Tokyo, Japan)
Tohru MIZUSHIMA (Kumamoto, Japan)
Abdulla M. MOLOKHIA (Alexandria, Egypt)
Masahiro MURAKAMI (Osaka, Japan)
Yoshinobu NAKANISHI (Ishikawa, Japan)
Yutaka ORIHARA (Tokyo, Japan)
Xiao-Ming OU (Jackson, MS, USA)
Wei-San PAN (Shenyang, China)
Shafiqur RAHMAN (Brookings, SD, USA)
Adel SAKR (Cincinnati, OH, USA)
Abdel Aziz M. SALEH (Cairo, Egypt)
Tomofumi SANTA (Tokyo, Japan)
Yasufumi SAWADA (Tokyo, Japan)
Brahma N. SINGH (Commack, NY, USA)
Hongbin SUN (Nanjing, China)
Benny K. H. TAN (Singapore, Singapore)
Ren-Xiang TAN (Nanjing, China)
Murat TURKOGLU (Istanbul, Turkey)
Stephen G. WARD (Bath, UK)
Takako YOKOZAWA (Toyama, Japan)
Liangren ZHANG (Beijing, China)
Jian-Ping ZUO (Shanghai, China)

(as of September 29, 2008)
Review

200 - 210 Spermicidal agents.

Heeshma C. Shah, Pratima Tatke, Kamalinder K. Singh

Brief Reports

211 - 215 Novel N-hydroxybenzamide histone deacetylase inhibitors as potential anti-cancer agents.

Jie Jiao, Hao Fang, Wenfang Xu

216 - 218 Synthesis and antifungal activity of 3-substituted thiochromanones.

Yang Liu, Wei Luo, Li Sun, Chun Guo

Original Articles

219 - 228 Transdermal patch incorporating salbutamol sulphate: *In vitro* and clinical characterization.

Nashwa A. El-Gendy, Nimeen A. Sabry, Mai El-Attar, Emad Omar, Manal Mahmoud

229 - 233 Establishment of a cell-based assay to screen insulin-like hypoglycemic drugs.

Li Zhang, Juan-juan Hu, Guan-hua Du

234 - 244 Inhibition of *in vivo* angiogenesis by *Anacardium occidentale* L. involves repression of the cytokine VEGF gene expression.

Sheela M. Lingaraju, Kaveri Keshavaiah, Bharathi P. Salimath
Production of a human antibody fragment against the insulin-like growth factor I receptor as a fusion protein.

Yu Kusada, Toru Morizono, Keiko Sakai, Atsushi Takayanagi, Nobuyoshi Shimizu, Yoko Fujita-Yamaguchi

The effects of dietary obesity on protein expressions of insulin signaling pathway in rat aorta.

Sameer H. Fatani, Ebrahim K. Naderali, Sunil Panchiani, Feisal Shah, Chris Wong
Spermicidal agents

Heeshma C. Shah, Pratima Tatke, Kamalinder K. Singh*

C.U.Shah College of Pharmacy, S.N.D.T. Women’s University, Mumbai, India.

ABSTRACT: In recent years, there is a development of vaginal contraceptives incorporating potent spermicides. Many compounds with different pharmacological activity have been evaluated in vitro for their spermicidal activity. Drugs such as surface-active agents (synthetic and natural), ionophores, antiliquefying agents, antimicrobial agents and miscellaneous agents such as gossypol, Azadirachta indica, vanadocenes have all been demonstrated to possess good spermicidal activity. Nonoxynol is the only spermicidal agent currently marketed and widely used. But there is still a need to develop alternative compounds for future use as safe spermicide.

Keywords: Spermicidal agents, Nonoxynol, Neem, Plants with spermicidal activity, Antifertility agents

1. Introduction

The world population continues to grow at an alarming rate, with a projected 50% increase in current world population to approximately 9 billion by 2050. Many methods such as condoms, oral contraceptives and intrauterine devices are available since long but there is still a quest for alternative means. A vaginal topical is the primary, if not the only, technique whereby, a women can prevent both pregnancy and infections. The serious development of chemical spermicides for public use dates back to the 1930’s. Research has focused on the development of safe, highly effective and inexpensive spermicidal agents as one of the several alternative methods for family planning.

Spermicides are a biologically obvious way of interrupting fertility and have advantage that they do not depend on high skilled personnel for their prescription and use. Spermicidal agents are defined as drugs that have the ability to immobilize or kill the sperm upon contact. An ideal spermicide should immediately and irreversibly produce immobilization of the sperm, non-irritating to the vaginal and penile mucosa, not have adverse effects on the developing fetus, free from long-term topical and systemic toxicity and should not be systemically absorbed.

Hence, the spermicidal agents should be critically evaluated for these aspects. Understanding the morphology of spermatozoa is essential to appreciate the mechanism of action of spermicide.

2. Morphology of spermatozoa

Each normal spermatozoon is made up of two parts a head and a tail. The head consists of two main parts, the nucleus and acrosome. The nucleus contains the whole of the chromatin content of the sperm and the acrosome is made up of collection of enzymes that will aid penetration of the zona-pellucida by the sperm. The connecting piece is a small area in a very short segment that joins the head to the tail. The sperm tail is the means by which the sperm moves. The tail of the sperm consists of three parts the middle piece, the principle piece and the terminal segment. Overall the tail measures around 50 μm. The whole length of the tail contains a central contractile unit known as axoneme. In the middle piece, a central axoneme is present which is surrounded by closely packed helix of mitochondria. The principle piece makes up more than 90% of the length of the tail followed by the terminal segment. The sperm plasma membrane serves as a continuous limiting cell boundary, maintaining cell integrity and forming a dynamic interface between the cell boundary and its immediate environment (1,2).

One of the most challenging pursuits in the realm of pharmaceutical and medical sciences is the search for newer and more potent spermicides with little or no toxic effects and available at reasonable cost. A review of spermicidal agents which are in various stages of preclinical and/or clinical stage of development are given as follows:
3. Spermicides acting through pH modification

The spermatozoa are motile between pH 6.7 to 8.5. Therefore, one of the oldest approaches for achieving spermicidal action has been to modify vaginal pH. The normal human vaginal pH is 3.8-4.2. This naturally acidic environment is maintained by the production of lactic acid by the vaginal flora. HIV, several STD-causing microbes and spermatozoa are inactivated at this low pH. When semen enters the vagina, the pH rises to above 6.0 because of the buffering activity of the ejaculate (pH 7.2-8.0) (3). It is well documented that sperm are sensitive to low pH and acidic solution can immobilize sperm within minutes (4).

ACIDFORM, an acid buffering vaginal formulation that maintains the acidic vaginal pH below 5.0 when ejaculate is deposited in the vagina or when a vaginal infection is present. In women, the desired acidification of semen can be achieved with a 3-5 mL dose because the average volume of the human ejaculate is about 3 mL, which would require less than 1 g of ACIDFORM to buffer the semen to a pH lower than 5.0. ACIDFORM is slightly off-white in appearance with a pH of about 3.55. The formulation consists of gelling agents, buffer salts, humectants, preservatives and water that are all GRAS except for one, which although not GRAS, is currently used in marketed vaginal formulations. A recently completed Phase I clinical safety study with ACIDFORM confirms its safety. No patient complaints (symptoms) have been recorded when ACIDFORM was applied vaginally for six consecutive days and no vaginal or cervical irritation was noted on visual or coloscopic inspection (5-8).

Lemon juice has been used as traditional intravaginal contraceptive throughout the Mediterranean region for hundreds of years. The spermicidal properties of lemon juice are possibly due to the high concentration of citric acid (9). Investigations have demonstrated that dyein ATPase in the sperm midpiece is required to energize the sperm tail. The acidic pH of lemon juice may immobilize sperm by denaturing dyein ATPase (10). Clarke et al. have demonstrated that a minimum concentration of 200 μL/mL lemon juice would be required to irreversibly immobilize 100% of spermatozoa. Ejaculate volume in normal men rarely exceeds 5 mL, so it would be necessary to deliver at least 1.5 mL of lemon juice into the vagina to obtain the desired concentration (9). Lemon juice would be a cheap and widely available vaginal contraceptive if its safety and efficacy were demonstrated (11).

4. Synthetic surface active agents

4.1. Non-ionic surfactants

In the category of non-ionic surfactants octoxynol and nonoxynol are the two commonly reported surfactants. Nonoxynol is more potent spermicide than octoxynol. Among the different nonoxynol derivatives designated as N1-N15, p-nonyl phenoxy polyethoxy ethanol (N-9) is reported to be the most potent spermicide (Figure 1) (12). At present N-9 is the only marketed contact spermicide available worldwide.

N-9 destroys the cell membrane of the neck of spermatozoa. The SEM/TEM of spermatozoa have revealed that after contact with N-9 the plasma membrane and the acrosomal membrane complex were removed, the midpiece membrane was absent, the normal cristae of the mitochondria were empty and the fibers were exposed. Damage to all membranes was first evident as vesiculations. Membranes then became loose and detached. The observed irreversible severe membrane alterations cause an immediate devitalization of the spermatozoa (13,14). At the dose of 50 μg/mL N-9 completely abolishes all sperm movement within one minute of addition. Although, N-9 has been employed as a contact spermicide for the last 30 years and is well tolerated, reports have appeared suggesting that the frequent use of surface active spermicides, can be associated with vaginal irritation and the appearance of lesions in the epithelium. The most common abnormality reported has been superficial de-epithelization of either the cervix or the vaginal walls, though there have been no reports of vaginal inflammation (15,16). In contrast, more recent studies reports that the use of N-9 as a microbicide or N-9 used in limiting the transmission of STD’s should be discontinued since N-9 interferes with the lipid bilayer of the vaginal epithelium and facilitates the process of absorption and transmission of the viral particle into the blood stream (17-20).

Nonoxynol-9 is commercially available as gel, cream, foam and pessary formulations in various strengths (Table 1).

Ahmad N et al. have designed a new bioadhesive suppository of N-9 called Long Acting, Sustained Release of Spermicide (LASRS). The formulation is reported to adhere well to cellulose membranes in vitro and was completely spermicidal in the primate (stumptailed macaque) on post-coital tests even when mating was delayed for 12 h. Vaginal irritation studies in the rabbit and primate showed LASRS to be acceptable even with a nonoxynol-9 dose as high as 22.5% (w/w) (21). No coloscopic or visual vaginal lesions were induced when LASRS with 20% N-9 was used for 7 consecutive days by the volunteers participating in a pilot clinical trial. These studies
and results in a magma with mesh of less than 5 μm, the cervical mucus, its colloid network structure disappears. Benzalkonium chloride also coagulates ovulatory enzymes of carbohydrate metabolism are disturbed. As determined by hamster-ova penetration test and acrosomal proteins disappear, the fecundity capacity is lost.

Spermatozoa at the concentration of 1 mg/mL. the spermatozoon motility decreases, acrosomal proteins disappear, and the enzymes of carbohydrate metabolism are disturbed. Benzalkonium chloride also coagulates ovulatory enzymes of carbohydrate metabolism are disturbed.

Benzalkonium chloride is a bactericidal cationic surfactant, of the ammonium series that ceases the sperm flagellar motility immediately upon contact with spermatozoa. Four seconds after contact, the midpiece and head are destroyed. In concentrations of 70-300 μg/mL, the spermatozoon motility decreases, acrosomal proteins disappear, and the enzymes of carbohydrate metabolism are disturbed. Benzalkonium chloride also coagulates ovulatory cervical mucus, its colloid network structure disappears and results in a magma with mesh of less than 5 μm, which is not permeable to spermatozoa. This action might be added mechanism of barrier to sperms in addition to its spermicidal activity. Vaginal suppository containing 18.9 mg of benzalkonium chloride have shown cervico-vaginal erosion/inflammation with the use of this suppository, which disappeared after cessation of use (23).

Saponins are natural surfactants widely occurring in many plants and are reported to have spermicidal action. A common lipid bilayer, which contains external, internal and transmembrane proteins, is fundamental feature of the plasma membrane of the sperm. Saponin molecules interact with this lipid bilayer, affect the glycoproteins of the cellular membrane and modify the ionic transport across the membrane, leading to surface changes. These changes, namely vesiculation, vacuolation or dissolution of head region may occur due to stretching, loosening, breakdown of the membrane and ultimate removal of the acrosome (27).

Some of the saponin containing plants includes:

5. Natural surface-active agents: Saponins

Mixtures of two partially isolated triterpenoid saponins from the powdered seeds of *Acacia auriculiformis* (Acaciaide A and B) have shown spermicidal activity at the concentration of 0.35 mg/mL. The aglycone parts of these two saponins were characterized as acacic acid lactone and monosaccharide constituents were identified as d-glucose, d-xylose, l-arabinose and l-rhamnose. The complete chemical structures of these compounds are given in Figure 2. Electron microscopic observation showed that the plasma membrane was disintegrated and total dissolution of the acrosomal cap was observed (28,29).

Saponins isolated from *Sapindus mukorossii* (reetha) have shown most potent spermicidal activity. The saponins reported are derivatives of hederagenin namely mukurozi-saponins E₁, G, X, Y₁, Y₂, Z₁ and Z₂ (30). After incubation with saponins at 0.5 mg/mL for 1 min, the spermatozoa did not exhibit...
any significant morphological changes, though at the same concentration, immobilization of the sperms was observed. At higher concentrations of saponins (1-50 mg/mL) spermatozoa displayed marked disruption, vacuolation, vesiculation and erosion of the membrane covering the head region. Coiling of the tail was also noticeable with higher concentrations of saponins though no damage was evident under SEM in the flagellar region of the sperm (27,31). These saponins were formulated into a contraceptive cream named ‘CONSAP’. This cream has completed Phase III clinical trials successfully in India (32).

5.3. *Molluga pentaphylla*

The ethyl acetate fraction of *Molluga pentaphylla*, a tropical herb contains an antifungal triterpenoid saponin, Mollugogenol-A (Figure 3) which has demonstrated spermicidal activity at 300 μg/mL. Electronic microscopic observation showed that the fragmentation or loss of plasma membrane, vesiculation of periacrosomal membrane and dissolution of the organelle as a whole are suggestive of sperm degeneration (33).

Other plants containing saponins, which have shown spermicidal activity, include *Phytolacca dodecadra*, *Calendula officinalis*, *Acacia caesia*, *Acacia concinna*, *Trigonella foenum-graecum* (34), *Chenopodium album* (35) and *Cestrum parqui* (36). Saponins are naturally occurring and there is no report of their systemic toxicity. However, due to their interfacial tension reducing property they may alter the permeability of the vaginal membrane on frequent use. In addition, reduction in interfacial tension may in fact, lead to decreased viscosity of the mucus and hence, result in an increased rate of transfer of spermatozoa through the vaginal mucosa. Therefore, it is necessary to critically evaluate these effects before advocating the use of saponins as spermicidal agents (12).

6. Spermicides with additional antimicrobial activity

6.1. *Chlorhexidine*

A contraceptive method, which additionally protects against venereal infections, will be of immense value. One such compound being investigated for its spermicidal action is the antiseptic, chlorhexidine. The mechanism of the spermicidal action of chlorhexidine is not fully understood, however its antiseptic action is attributed to its high positive charge density resulting in non-specific binding to the negatively charged elements on the microbial cell wall. Disruption of cellular permeability, cell wall fluidity and altered metabolic activity has been suggested as a possible cause of the antiseptic action. Chlorhexidine shows spermicidal activity at the dose of 4.81 mg/mL within 20 sec, however hypersensitivity to chlorhexidine upon topical use has been reported (37,38).

6.2. *Magainins*

Magainins are class of peptides initially isolated from the skin of the African clawed frog, *Xenopus laevis*. Magainins A and G are two natural peptides having 23 amino acids and differ by only two substitutions, have been found to have a wide spectrum *in vitro* antimicrobial activity against gram positive and negative bacteria, fungi, and protozoa. They exhibit

![Figure 3. Structure of Mollugogenol-A.](image-url)
spermicidal action, besides antimicrobial activity (39). Magainins are membrane active compounds and the decreased motility and viability of sperm has been observed in the presence of Magainins may be attributed to the loss of permeability of the plasma membrane, which leads to cell-death. Magainin-A was found to be more potent than Magainin-G. Intravaginal administration of magainin-A 200 μg to rats (40) and 1 mg to rabbits and monkeys once before mating resulted in 100% sperm immobilization (41,42). Magainin-A does not have overt cytotoxic properties and is safe for intravaginal application. It is also active against various STI-causing pathogens but not against HIV-1 and HIV-2. It is reported that effectiveness of magainin as a contraceptive in vivo is possibly due in part to the removal of cholesterol from sperm membranes (43).

6.3. Nisin

Nisin, a 34 amino acid, naturally occurring antimicrobial cationic peptide is known to be produced by bacteria Lactococcus lactis. Nisin has been used as a food preservative throughout the world and the World Health Organization (WHO) and US, Food & Drug Administration have conferred GRAS status to this peptide. At the dose of 300-400 μg, complete immobilization of human spermatozoa was observed within 20 sec. In vivo contraceptive efficacy studies in rats showed complete arrest of sperm motility and no pregnancy in any of the animals. At the contraceptive dose of 200 μg, Nisin did not alter the morphology of the vaginal epithelial cells, nor did it cause any histopathological lesions in the vaginal epithelium when administered intravaginally for 14 consecutive days. The mechanism by which Nisin exerts its rapid spermicidal action is not known. However, the existing evidence suggests that Nisin possesses an overall positive charge and interacts preferentially with anionic phospholipids. The sperm plasma membrane contains high concentration of phosphatidylglycerol, a strong anionic phospholipid moiety and thus, Nisin may have high affinity towards spermatozoa (44).

6.4. Zidovudine derivatives

Zidovudine i.e. 3’-azido-3’-deoxythymidine though lacks spermicidal activity by itself, its two novel phenyl phosphate derivates WHI-05 [5-bromo-6-methoxy-5,6-dihydro-3’-azidothymidine-5’-(p-methoxyphenyl) methoxylanilinyl phosphate] (Figure 4) and WHI-07 [5-bromo-6-methoxy-5,6-dihydro-3’-azidothymidine-5’-(p-bromophenyl) methoxylanilinyl phosphate] (Figure 5) have been identified to exhibit potent anti-HIV and spermicidal activity (45,46). They are dual-functional microbicides lacking detergent-type membrane toxicity, which would have advantages over the currently available vaginal microbicides. Unlike, N-9, the spermicidal activity of WHI-05 and WHI-07 was not associated with cytotoxicity to reproductive tract epithelial cells (47,48). A repeated intravaginal exposure of gel microemulsion formulations of WHI-05 and WHI-07 in mice and rabbits indicated these are non-cytotoxic and lacks inflammation-inducing properties (49,50). D’Cruz et al. also demonstrated that an intravaginal application of 2% WHI-07 via a gel microemulsion in rabbit model resulted in marked contraceptive activity (51).

6.5. C31G

C31G, a spermicide composed of an equimolar mixture of n-dodecyl-dimethylamine-N-oxide (C17-N-O) and N-(n-dodecyl), N-dimethyl-glycine (C12-betaine) offers a potential alternative to nonoxynol-9, both as a spermicide and as a microbicide/virucide. C31G has shown in vitro activity against a large number of gram-negative, gram-positive bacterial strains and anti-fungal properties. It is a potent virucidal agent with activity against HIV and herpes simplex virus (32). A phase I double-blind randomized study of 1.2% C31G with hydroxyethyl cellulose (HEC) suggested that physical epithelial changes after 7 consecutive days of product use were similar to changes seen with a marketed 2% nonoxynol-9 product (Gynol-II). The subjective symptoms of genital burning or heat, however, were much greater with the C31G HEC product, which limits its usefulness (53).
7. Antiliquefying agents

The active antiliquefying agents immediately coagulate ejaculated semen, possibly through a denaturing effect on the glycoproteins present in coagulated material. Highly effective antiliquefying property has been exhibited by mercury (2.7 mg/mL), nitrophenols (6.9 mg/mL), sodium naphthyl phosphate and tannic acid. A combination of antiliquefying and a potent spermicidal agent may offer highly promising approach towards vaginal contraception. However, the safety index of the currently evaluated antiliquefying compounds is too low to permit their use in pharmaceutical formulation for in vivo use (54).

8. Calcium ion and sperm motility

Calcium ions have an apparently paradoxical effect on sperm motility. Hong CY et al. states that in epididymis, calcium ions stimulate immature sperms but in ejaculated semen, calcium ions inhibit sperm motility. Thus calcium chelators such as ethylene glycol-bis β-aminoethyl ether N,N',N'',N''-tetraacetic acid (EGTA) and ethylenediamine tetraacetic acid (EDTA), as well as calcium antagonists such as diltiazem, flunarizine and verapamil stimulate sperm motility in ejaculated human semen (55).

However, Lee C et al. stated that a decrease in calcium ion concentration in semen will inhibit sperm motility. After exposure to EDTA, the calcium ion concentration in semen was found decreased with increasing EDTA concentration. Thus EDTA appears to exert the spermicidal activity by modulating calcium ion concentration in semen. EGTA 5.5 mg/mL, EDTA 5 mg/L showed activity within 2 min (56).

The sperm membrane is reported to possess a Na⁺-Ca²⁺ exchanger and a Ca²⁺-ATPase pump. Both these systems play a vital role in extrusion of Ca²⁺ from the sperm cell. 2',4'-dichlorobenzamil hydrochloride (Benzamil), has been reported to inhibit both the above systems and thus benzamil exhibits spermicidal activity in ejaculated human semen (55).

When 2',4'-dichlorobenzamil hydrochloride (DBZ) was combined with any one of the three H₂-receptor antagonists, cimetidine, ranitidine and famotidine, the time required to produce complete loss of sperm viability was found to be reduced by minimum of 2.7, 1.9 and 3.4 fold, respectively. The elevation of intrasperm Ca²⁺ by H₂-receptor antagonists can be attributed to their ability to inhibit Na⁺-K⁺ ATPase enzyme system that is reported to be present on the sperm membrane. Thus the rate of increase of intrasperm Ca²⁺ was found to be faster when DBZ was used in combination with any H₂-receptor antagonists (59).

9. Ionophores

Ionophores are compounds that form lipid soluble complexes with specific cations and act as vehicles for transporting these cations across biological membrane. The calcium ionophore, A23187, increases the intracellular calcium concentration and inhibits human sperm motility at the concentration of 20 μM within 120 sec. However, local effects of ionophores on vaginal tissue and their systemic effects after absorption are yet to be evaluated (60).

10. Miscellaneous agents

10.1. Gossypol

Gossypol, a disesquiterpene aldehyde (Figure 6) isolated from the seeds of cotton (Gossypium species) plant, is reported to be a spermicidal agent (61). The concentration required to immobilize 100% spermatozoa within 20 sec is 40 mg/mL (62). Gossypol inhibits sperm motility by blocking ATP production and utilization. It acts on mitochondria, suppressing oxygen consumption, inhibiting the pyruvate dehydrogenase and ATPase activities and probably on the motility apparatus by blocking dynine ATPase activity and preventing protein phosphorylation (63).

10.2. Lyophilized Aloe barbadensis

Aloe barbadensis, one of the worldwide botanicals, has been used for health purposes for thousands of years and comes in a variety of forms including gel and lyophilized powder. Fresh gels are not used intravaginally as they are unstable and also contain...
sugars, which may accelerate vaginal infections. Lyophilized _Aloe barbadensis_ does not contain sugars but eleven different mineral elements in different concentrations, which have shown a toxic effect on the tail of spermatozoa leading to rapid immobilization of spermatozoa. It was seen that the spermatozoa were intact, but their tails were curled after being exposed to lyophilized _Aloe barbadensis_ at 100 mg/mL concentration within 30 sec. Rabbit vaginal irritation study showed no irritation of vaginal epithelium after application of 100 mg/mL lyophilized _Aloe barbadensis_ for 10 days (64).

10.3. _Azadiractha indica_

The neem tree, _Azadiractha indica_ is indigenous to the Indian subcontinent. Neem oil, an oil extracted from the seeds of the neem tree, has been found to possess strong spermicidal activity. By the process of hydrodistillation, the volatile fraction of neem oil has been isolated and coded as NIM-76. A concentration of 25 mg/mL of the compound was found to achieve total spermicidal effect in 20 sec. Vaginal irritation study conducted in rabbits, by intravaginal application of 15 mg of NIM-76 in 2 mL of gelatin jelly for 10 days showed no irritation to the vaginal mucosa (65). Khillare B has revealed that the aqueous extract of old and tender neem leaves is a potent spermicide. The minimum effective concentration required to kill 1 million sperm in 20 sec was 2.91 mg and 2.75 mg for tender and old leaf extract, respectively (66).

10.4. _Allium sativum_

Garlic and its active principle, allitridium (Figure 7) possess bacteriostatic and antimycotic action. Allitridium showed complete immobilization of sperms from human and animals within 20 sec at 7.5 mg/mL and within 3 min at 1.5 mg/mL. Allitridium (7.5 mg/mL) showed no vaginal irritation reaction or other side effects. It had no bacteriostatic action on the lactic acid bacilli, so it would not interfere with the growth of the bacilli in the vagina (67).

\[\text{CH}_2\text{=CH-CH}_2\text{S-S-CH}_2\text{=CH}_2 \]

Figure 7. Structure of Allitridium.

10.5. _Curcuma longa_ (Turmeric)

Curcumin (diferuloyl methane) (Figure 8), a yellow pigment present in the rhizomes of turmeric and related species and used as a spice, has a wide array of pharmacological and biological activities. Studies have demonstrated that curcumin has anti-tumor, anti-inflammatory and anti-infective activities. Curcumin has also shown to inhibit the integrase activity of the HIV. When curcumin is used in the concentrations of 30 μg/mL and 100 μg/mL, the human sperm motility was reduced to 53.4% and 4.1% after 120 min. A total 100% immobilization was achieved with a dose of 300 μg/mL at the end of 60 min. Curcumin-induced changes in sperm mitochondrial transmembrane potential indicate that this flavanoid may interfere with sperm energy metabolism. Curcumin in micromolar concentrations inhibits the protein kinase C, which is present in human sperm and is believed to play a role in modulating human sperm flagellar movement (68).

10.6. _Stephania hernandifolia_ and _Achyranthes aspera_

A composite extract of the leaves of _Stephania hernandifolia_ and the roots of _Achyranthes aspera_ were prepared in a ratio of 1:3 and evaluated for spermicidal activity at different concentrations ranging from 0.04 to 0.32 g/mL. Concentration of 0.08 g/mL of the extract affected the motility and at a concentration of 0.16 g/mL, the sperm motility was reduced to 20% immediately within 20 sec. At the concentration of 0.32 g/mL complete sperm immobilization was observed within 2 min after application of the extract. The hypo-osmotic swelling of these sperms was reduced significantly at this highest concentration, indicating that the crude extract may probably cause injury to the sperm plasma membrane. A low concentration of 0.04 g/mL was found to be ineffective (69).

10.7. _Carica papaya_ seed extracts

The chloroform extract, the benzene chromatographic fraction of the chloroform extract and its methanol and ethyl acetate subfractions and the isolated compounds ECP 1 and 2 and MCP 1 and 2 have shown a sperm immobilizing effect on human spermatozoa *in vitro*. Total inhibition of motility was observed within 20-25 min at all concentrations of all products. The SEM and TEM of spermatozoa showed membrane damage in the head as well as midpiece suggesting the mode of action appears similar to that of N-9 (70).

10.8. _Praneem polyherbal formulations_

A combination formulation developed as "Praneem polyherbal cream" which includes a purified extract from the dried seeds of _Azadiractha indica_ (Neem) (250 mg/mL), extract from the pericarp of fruits of _Sapindus_
mukorosii (0.5 mg/mL) and quinine hydrochloride (3.46 mg/mL) has shown spermicidal activity in 20 sec. The formulation has shown high contraceptive efficacy in rabbits and in monkeys after intravaginal application. Also the formulation was found to be safe with no vaginal irritation when applied intravaginally for 30 days at a daily dose of 1 mL (77).

The Praneem polyherbal pessary and tablet formulated, includes purified ingredients from neem leaves, Sapindus mukorosii and Mentha citrata oil. The vaginal pessary has shown potent spermicidal action of human spermatozoa in vitro and high contraceptive efficacy was demonstrated in rabbits of proven fertility (72,73). Praneem polyherbal formulations have shown in vitro activity against HIV and sexually transmitted disease pathogens (73). Praneem vaginal pessaries and tablets were found to be safe for once daily intravaginal use consecutively for 7 and 14 days in healthy women volunteers (74,75).

10.9. Parabens

Parabens are commonly added in food, beverages, pharmaceuticals and cosmetics as antifungal preservatives. Methyl paraben, ethyl paraben, propyl paraben and butyl paraben have shown potent spermicidal activity at the concentrations of 6, 8, 3, and 1 mg/mL, respectively (76).

10.10. Zinc acetate

Zinc acetate at 10 mg/mL concentration has shown spermicidal activity within 30 sec, while the other zinc salts such as zinc gluconate, zinc sulfate and zinc chloride are not spermicidal at the same concentration. It is probably that zinc ion and acetate decrease the availability of oxygen to sperm, which leads to immobilization. Transmission electron microscopy of zinc acetate treated human spermatozoa showed the most visible changes in the mitochondria of the middle portion of the tail. There was a reduction in the electrodensity of mitochondria of the spermatozoa but the sheath was present. Vaginal irritation studies in rabbits with continuous administration of 4 mg zinc acetate/kg or 8 mg zinc acetate/kg for 10 days caused no irritation of highly sensitive rabbit vaginal epithelium. In addition zinc has also been reported to be beneficial to wound healing (64).

10.11. Gel microemulsions

Microemulsions are thermodynamically stable, isotropically clear dispersions of water, oil, and surfactants with potential as drug-delivery vehicles. D’Cruz O et al. has formulated novel submicron (30-80 nm) particle gel microemulsion (GM) formulations GM-144 and GM-4. GM-144 prepared from seven non-toxic pharmaceutical excipients (propylene glycol, Captex 300, Cremophor EL, Phospholipon 90G, Rhodigel, Pluronic F-68 and sodium benzoate) was found to show rapid sperm-immobilizing activity in human semen in less than 30 sec (77). GM-4 formulation containing eight pharmaceutical excipients (Captex 300, Cremophor EL, Phospholipon 90G, Propylene glycol, PEG-200, Sea span carrageenan, Viscarin carrageenan and sodium benzoate) exhibited potent spermicidal activity in less than 2 min (78). In standard rabbit model, GM-144 and GM-4, when tested as a vaginal contraceptive, GM-144 was as effective as the commercially available N-9 formulation (Gynol II) and GM-4 was far more effective than Gynol-II. No toxic effect was observed on the vaginal mucosa of rabbits after daily exposure for 10 days (77-80).

10.12. Vanadocenes

Spermicidal organometallic complexes of vanadium (IV) with bis(cyclopentadienyl) rings or vanadocenes are a new class of experimental contraceptive agents. Vanadocenes are reported to have rapid, potent and selective sperm immobilizing activity (SIA). Vanadocenes elicited potent SIA at nanomolar to micromolar concentrations. The SIA of representative vanadocenes was 400-fold more potent than that of N-9. Vanadocenes dihalides immobilized human sperm in semen within 15 sec without affecting the sperm membrane integrity or viability of normal human vaginal or cervical epithelial cells. These features of vanadocenes fundamentally differ from those of currently used membrane-active detergent-type spermicides that are cytotoxic to genital tract epithelial cells at spermicidal concentration. The lack of detergent-type membrane toxicity of spermicidal vanadocenes may have particular clinical utility as a new class of contraceptive agents. Spermicidal activity of vanadocenes were shown to be mediated by a unique mechanism involving membrane intercalation that was independent of dynein adenosine triphosphatase activity, protein tyrosine phosphatase activity, and the phosphocreatine/creatine kinase system. Among the 45 vanadocenes that were synthesized and evaluated for human spermicidal activity vanadocene acetylacetonato monotriflate (VDACAC) (Figure 9) and vanadocene dithiocarbamate (VDDTC) (Figure 10)
were the most stable and potent spermicidal vanadocenes (81–88). Repeated intravaginal application of gel formulations of VDACAC and VDDTC did not induce local inflammation, toxicity or retention of vanadium in the mice and rabbit vaginal irritation model. D’Cruz OJ et al. demonstrated that the intravaginal application of a 0.1% VDDTC in rabbits and pigs results in remarkable contraceptive activity (89–92).

11. Conclusion

This summary of the spermicides pipeline and complementary research clearly shows that much progress has been made in the last decade. Laboratory and clinical research has been complemented by a growing body of research and literature on spermicides acceptability, harm reduction and protection strategies, and potential markets. In recent years, attitudes toward spermicides have generally become more positive in response to public and nonprofit initiatives to address these barriers. However, many challenges remain, including the need for a significant increase in investment to accelerate product development and complementary research, and to plan for availability and access once effective spermicides are available.

References

www.ddtjournal.com

Novel N-hydroxybenzamide histone deacetylase inhibitors as potential anti-cancer agents

Jie Jiao, Hao Fang, Wenfang Xu*

Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Shandong University, Ji'nan, China.

*Correspondence to: Dr. Wenfang Xu, The Department of Medicinal Chemistry, School of Pharmacy, Shandong University, 44 West Wenhua Road, Ji'nan 250012, Shandong, R.P. China; e-mail: xuwenf@sdu.edu.cn

ABSTRACT: Histone deacetylases (HDACs) are a class of Zn$^{2+}$ dependent metalloproteases that play an important role in tumorigenesis. Inhibition of HDACs may be a potential strategy for cancer therapy. This study designed and synthesized a series of novel N-hydroxybenzamide histone deacetylase inhibitors based on the structural features of suberoylanilide hydroxamic acid (SAHA), the first HDAC inhibitor that came to market. Preliminary biological evaluation in vitro found that most of the inhibitors had satisfactory inhibitory activity (IC$_{50} = 1$-17 μM) against HDACs and HCT116 tumor cells.

Keywords: HDACs, Inhibitors, N-hydroxybenzamide, Antitumor

1. Introduction

Cancer is the most dreaded killer of humans and takes a number of lives every year. In recent years, a class of metalloproteases known as histone deacetylases (HDACs) has been considered as an epigenetic target for cancer therapy. These enzymes play an important role in gene transcription, the cell cycle, differentiation, and tumorigenesis. Inhibitors of these key enzymes are inducers of growth arrest and apoptosis of many tumor cells, so HDAC inhibitors are considered to be a new generation of anti-cancer agents (1).

HDACs are involved in modification and remodeling of chromosomal histones by removing acetyl groups from ε-NH$_2$ of lysine residues in histones through Zn$^{2+}$-dependent hydrolysis (Figure 1). Deacetylation results in the positive charge density on the N-termini of nucleosomal histones increasing, which strengthens the interaction with the negatively charged DNA chain and blocks the access of transcription factors. In tumor cells, HDACs are over-expressed, resulting in deacetylated histones being tightly packed with DNA to form an abnormal "compact structure" of chromatin. In this process, expression of the onco-suppressors p21$^{\text{WAF1}}$ and p27$^{\text{KIP1}}$ is inhibited, and activity of the onco-suppressor p53 is down-regulated, but tumor activators HIF-1 and VEGF are up-regulated. Therefore, the inhibition of HDAC activity is considered a potential strategy for cancer therapy (2-4).

Suberoylanilide hydroxamic acid (SAHA), a linear chain hydroxamic acid and the first HDAC inhibitor, was approved by the US FDA in 2006 (5). As reported in the literature, there are two rules to the structure-activity relationship (SAR) of SAHA derivatives: 1) introduction of hydrophobic groups to the para-position of the benzene ring results in a higher level of activity, and 2) the optimal chain length between the benzene ring and zinc-binding group (ZBG) is 7-8 atoms (Figure 2) (6-8). N-hydroxy-4-(3-phenylpropanamido)benzamide (HPPB) (9) and its cinnamamide analogue provide the molecular formwork for the design of novel N-hydroxybenzamide HDAC inhibitors. This design strategy has been shown in Figure 2; ferulic acid, a natural cinnamic acid, was used as the starting material to prepare the HPPB derivatives and their cinnamamide analogues.

Figure 1. HDACs function of modification of histones.
2. Materials and Methods

All material and reagents used in this work are analytical reagents. All reactions were monitored by thin-layer chromatography on 0.25 mm silica gel plates (60GF-254) and visualized with UV light. 1H NMR spectra were determined on a Bruker Avance 300 spectrometer using TMS as an internal standard. ESI-MS were determined on an API 4000 spectrometer. Melting points were determined on an electrothermal melting point apparatus and are uncorrected. The route of synthesis has been shown in Scheme 1.

Esterification of ferulic acid 1 with p-methyl phenylsulfonic acid (PTS) in methanol yielded methyl ferulic acid 2, which was reacted with BnBr in DMF by Williamson etherification and then hydrolyzed to provide compound 4a. Compound 4a was reacted with SOCl$_2$ to produce acylation of methyl 4-aminobenzoate, and then hydrolysis was performed to yield compound 5a. Compound 5a was reacted with ClCOOBu- to provide a mixed anhydride and then reacted with NH$_2$OH to yield compound 6a. Compound 6b was prepared from compound 2 in the same way as compound 6a using the n-bu substituted 4'-OH of compound 2. In addition, hydrogenation of compound 2 yielded 3, which provided compound 6c and 6d in the same way as compounds 6a and 6b.

3. Results and Discussion

In vitro bioactivity evaluation of compounds 6a-6d was performed by HDAC activity assays using a HDAC colorimetric activity assay kit (AK501, Biomol Research Laboratories) and MTT assays of human colonic cancer cells (HCT116) because HDACs are highly expressed in this cell type.

3.1. Procedures for HDAC activity assay

The source of HDACs was HeLa nuclear extracts including HDAC1 and HDAC2 (the major contributors to HDAC activity in HeLa nuclear extracts), and the substrate was a type of $[^1]$Hacetylated histone peptide. HDAC1 and HDAC2 are known to both be nucleus proteins in charge of the deacetylation of histones (10). Assays we performed according to kit instructions. The compound samples and the control drug were diluted to various concentrations: 20 μg/mL, 4 μg/mL, 0.8 μg/mL, and 0.16 μg/mL. On the 96-well plate, HDACs (5 μL/well) were incubated at 37°C with 10 μL of various concentrations of samples and 25 μL of substrate. After reacting for 30 min, Color de Lys Developer (50 μL/well) was added. Then, after 15 min the ultraviolet absorption of the wells was measured on a microtiter-plate reader at 405 nm. The % inhibition was calculated from the ultraviolet
IC₅₀ values were calculated according to a regression analysis of the concentration/inhibition data.

3.3. Inhibitory activity of compounds 6a–6d

Results indicating the activity of compounds 6a–6d are shown in Table 1. These compounds all had satisfactory absorption readings of inhibited wells relative to those of control wells. Finally, the IC₅₀ values were determined using a regression analysis of the concentration/inhibition data.

3.2. Procedures for the MTT assay

The cells, being maintained in McCoy's 5a medium with 10% fetal bovine serum, were plated in 96-well plates (50 μL/well) at the density of 2.0 × 10⁵/mL. After 4 h, compounds of various concentrations (400 μg/mL, 200 μg/mL, 100 μg/mL, 500 μg/mL, and 25 μg/mL) were dosed, and the cells were cultured for 2 days. Then 0.5% MTT (10 μL/well) were added to each well. After an additional 4 h of incubation, OD₅₇₀ and OD₆₃₀ were measured as a reference, and the IC₅₀ values were calculated according to a regression analysis of the concentration/inhibition data.

Table 1. Inhibitory activities of compounds 6a–6d against HDACs and tumor cells

<table>
<thead>
<tr>
<th>Compounds</th>
<th>HDACs IC₅₀ (μM)</th>
<th>HCT 116 IC₅₀ (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6a</td>
<td>12.7</td>
<td>>1000</td>
</tr>
<tr>
<td>6b</td>
<td>16.4</td>
<td>175.6</td>
</tr>
<tr>
<td>6c</td>
<td>1.8</td>
<td>208.8</td>
</tr>
<tr>
<td>6d</td>
<td>4.0</td>
<td>193.6</td>
</tr>
<tr>
<td>SAHA</td>
<td>1.3</td>
<td>245.6</td>
</tr>
</tbody>
</table>
activity (IC_{50} = 1-17 μM) at inhibiting HDACs. In general, HPPB derivatives 6c and 6d were more potent than their cinnamamide analogues 6a and 6b. With the exception of 6a, compounds exhibited a higher level of activity at inhibiting HCT116 cell growth than SAHA (Figure 3). Compound 6b (IC_{50} = 16.4 μM) showed less potency than other compounds, but among these compounds it exhibited the highest level of activity at inhibiting HCT116 cell growth. The HPPB derivatives 6c and 6d both showed exciting bioactivity in vitro and could be used as leading compounds to guide further study on HPPB derivatives in the future.

4. Conclusion

A series of novel N-hydroxybenzamidate HDAC inhibitors was designed and synthesized based on the structural features of SAHA. Preliminary biological evaluation in vitro found that most of these inhibitors showed satisfactory activity at inhibiting HDACs and HCT116 cell growth. These compounds could be used as leading compounds in the future.

Acknowledgments

The authors wish to thank Xuejian Wang for his work on the MTT assays of these compounds. This work was supported by the National "863" Foundation of China (Grant No. 2007AA022Z314).

Supplementary data

Synthesis of compound 6c, general procedures, analytical data of the compounds 6a-6d.

(E)-Methyl 3-(4-hydroxy-3-methoxyphenyl)acrylate (2)

Ferulic acid (30.0 g, 0.15 mol) was dissolved in dry MeOH (300 mL), then PTS (5.0 g, 0.03 mol) was added. The solution was heated to 80°C to be in reflux for 6 h, and then it was concentrated under vacuum. The residue was added by water (100 mL) and then extracted by EtOAc (100 mL) for 3 times. The organic layer was merged and washed by water and then dried with MgSO₄. The solution was evaporated to give a yellow crystal product (31.0 g, yield: 96.3%). mp 53-55°C, ESI-MS m/z: 209.4 (M+H)^+.

Methyl 3-(4-hydroxy-3-methoxyphenyl)propanoate (3)

Compound 2 (25.0 g, 0.12 mol) was dissolved in MeOH (240 mL), then 10% Pd-C (0.5 g) was added. The solution was stirred at room temperature and filled with H₂ in one atm and for 12 h. The reaction mixture was filtered off Pd-C, and the filtrate was evaporated to give a diaphanous oil product (25.0 g, yield: 99.0%). mp 53-55°C, ESI-MS m/z: 211.3 (M+H)^+, 228.4 (M+NH₄)^+, 233.3 (M+Na)^+.

3-(4-Butoxy-3-methoxyphenyl)propanoic acid (4e)

Compound 3 (2.1 g, 0.01 mol) was dissolved in dry DMF (20 mL), then KOH powder (0.62 g, 0.012 mol) was added. The solution was stirred for 1 h at room temperature, then n-BuBr (1.7 g, 0.01 mol) was dropped into reaction mixture. After stirred for another 5 h, the reaction mixture was diluted by 100 mL water. Then the solution was extracted by ether (50 mL) for 3 times. The organic layer was merged and washed by water and then dried with MgSO₄. The solution was evaporated to give a yellow solid product which was dissolved in EtOH (50 mL), then 2 mol/L NaOH (10 mL) was added. The solution was stirred at 75°C for 3 h, and then concentrated under vacuum. The residue was added by 1 mol/L HCl (50 mL), then the solution was evaporated to give a diaphanous oil product (25.0 g, yield: 99.0%). mp 53-55°C, ESI-MS m/z: 209.4 (M+H)^+.
filtered to get the sediment which was washed by water for several times. Recrystallisation of the sediment with acetone to get white crystal product 1.3 g. Yield: 45.5%, mp 90-91°C, ESI m/z (M+H)+ 287.4, (M+NH4)+ 304.5, (M+Na)+ 309.6, (M+K)+ 325.5. 1H NMR (DMSO-d6, δ ppm, J Hz): 12.10 (s, 1H), 7.44-7.29 (m, 5H), 6.92-6.68 (m, 3H), 5.02 (s, 2H), 3.75 (s, 3H), 2.75 (t, 2H, J = 7.5 Hz), 2.50 (t, 2H, J = 7.5 Hz).

4-(3-(4-(Benzyl oxy)-3-methoxyphenyl) propanamido) benzoic acid (5c)

Compound 4c (1.0 g, 3.5 mmol) was dissolved in dry THF (50 mL), the solution was stirred under 0°C and then SOCl2 (1.2 g, 10 mmol) was dropped into the solution. After 5 h, the reaction mixture was evaporated under vacuum. The residue was added by water (100 mL) and extracted by EtOAc (20 mL). The solution was evaporated to give a crude product which was recrystallised with acetone to get white crystal product 0.3 g, (yield: 28.6%). Mp: 163-165°C, ESI-MS m/z: 387.4 (M+H)+, IR (KBr, σ cm−1): 3302, 1668, 1514, 1255, 1H NMR (DMSO-d6, δ ppm, J Hz): 11.10 (s, 1H), 10.34 (s, 1H), 8.94 (s, 1H), 7.71-7.62 (m, 4H), 7.44-7.29 (m, 5H), 6.92 (d, 1H, J = 8.1 Hz), 6.85 (d, 1H, J = 8.1 Hz), 6.73 (d, 1H, J = 8.1 Hz), 6.72 (d, 1H, J = 6.6 Hz), 3.71 (s, 3H), 2.84 (t, 2H, J = 7.5 Hz), 2.62 (t, 2H, J = 7.5 Hz).

4-(3-(4-(Butoxy-3-methoxyphenyl)propanamido)N-hydroxybenzamide (6d)

Mp: 163-165°C, ESI-MS m/z: 387.4 (M+H)+, IR (KBr, σ cm−1): 3302, 1668, 1514, and 1255, 1H NMR (DMSO-d6, δ ppm, J Hz): 11.10 (s, 1H), 10.13 (s, 1H), 8.95 (s, 1H), 7.71-7.62 (m, 4H), 6.85-6.82 (m, 2H), 6.72 (d, 1H, J = 8.1 Hz), 3.88 (t, 2H, J = 6.6 Hz), 3.71 (s, 3H), 2.84 (t, 2H, J = 7.5 Hz), 2.62 (t, 2H, J = 7.5 Hz), 1.70-1.61 (m, 2H), 1.47-1.35 (m, 2H), 0.91 (t, 3H, J = 7.5 Hz).

(E)-4-(3-(4-(Benzyl oxy)-3-methoxyphenyl)acrylamido)-N-hydroxybenzamide (6a)

Mp: 214-215°C, ESI-MS m/z: 419.4 (M+H)+, IR (KBr, σ cm−1): 3247, 1597, 1512, and 1258, 1H NMR (DMSO-d6, δ ppm, J Hz): 11.10 (s, 1H), 10.34 (s, 1H), 8.94 (s, 1H), 7.74 (s, 4H), 7.56 (d, 1H, J = 15.6 Hz), 7.47-7.34 (m, 5H), 7.26-7.09 (m, 3H), 6.72 (d, 1H, J = 15.6 Hz), 5.15 (s, 2H), 3.84 (s, 3H).

(E)-4-(3-(4-(Butoxy-3-methoxyphenyl)acrylamido)-N-hydroxybenzamide (6b)

Mp: 230-233°C, ESI-MS m/z: 385.5 (M+H)+, IR (KBr, σ cm−1): 3181, 1648, 1596, 1511, and 1263, 1H NMR (DMSO-d6, δ ppm, J Hz): 11.10 (s, 1H), 10.33 (s, 1H), 8.94 (s, 1H), 7.74 (s, 1H), 7.55 (d, 2H, J = 15.6 Hz), 7.22-7.00 (m, 3H), 6.71 (d, 1H, J = 15.6 Hz), 4.01 (t, 2H, J = 6.6 Hz), 3.83 (s, 3H), 1.76-1.68 (m, 2H), 1.44 (q, 2H, J = 7.2 Hz), 0.94 (t, 3H, J = 7.2 Hz).
Synthesis and antifungal activity of 3-substituted thiochromanones

Yang Liu, Wei Luo, Li Sun, Chun Guo*

School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, China.

ABSTRACT: A series of 3-substituted thiochromanones has been prepared. Their structures were confirmed by H1-NMR and HRMS. All of the synthesized compounds were screened for antifungal activity against ten fungi species in vitro. The compounds 2f and 2g were more efficient than the control drug, ketoconazole.

Keywords: Thiochromanone, Synthesis, Antifungal activity

1. Introduction

In recent years, the incidence of fungal infections has reached alarming proportions. This is largely due to a number of factors such as intensive uses of chemotherapy for bacterial infections and cancers. At the same time, the number of systemic fungal infections has markedly increased; this has been true for large populations of immunocompromised patients as well as those suffering from various hematological malignancies, those with acquired immune deficiency syndrome (AIDS), and those undergoing organ transplantations (1,2). An initial study on agricultural antibiotics by the current authors revealed an active ingredient with antifungal activity in vitro; this was identified as a compound including a scaffold of thiochromanone. Similarly, Nakazumi H et al. also reported that thiochromanone derivatives have broad biological activities (3,4). Encouraged by these results, the current authors designed and synthesized a series of 3-substituted thiochromanone derivatives. The preliminary structure-activity relationship has been established based on the results of an in vitro antifungal assay. Optimization of the lead scaffold allowed the preparation of several compounds with good antifungal activity in vitro.

2. Materials and Methods

2.1. Synthesis of 3-substituted thiochromanones

The 3-substituted thiochromanones (2, 3, 4, 5 and 6, Table 1) in this paper were prepared from compound 1 as shown in Scheme 1. The starting material compounds 1a-g were obtained by a direct method as outlined in Scheme 2 (5,6). Commercially available substituted thiophenols were condensed with β-chloro-propionic acid under basic conditions in ethanol, followed by cyclization in H2SO4 to give compounds 1a-g.

The Mannich base derivatives of secondary saturated amines, compounds 2a-o, were prepared by refluxing the mixtures of 1a-g, paraformaldehyde, and

![Synthesis and antifungal activity of 3-substituted thiochromanones](image-url)
<table>
<thead>
<tr>
<th>Compounds</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>Yield (%)</th>
<th>MIC (μM)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C.a</td>
<td>C.n</td>
</tr>
<tr>
<td>1a</td>
<td>5-F</td>
<td>H</td>
<td></td>
<td></td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>1b</td>
<td>5-Cl</td>
<td>H</td>
<td></td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>1c</td>
<td>5-Br</td>
<td>H</td>
<td></td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>1d</td>
<td>6-CF3</td>
<td>H</td>
<td></td>
<td></td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>1e</td>
<td>5-CH3</td>
<td>H</td>
<td></td>
<td></td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>1f</td>
<td>5-F</td>
<td>6-Cl</td>
<td></td>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>1g</td>
<td>6-Cl</td>
<td>8-Cl</td>
<td></td>
<td></td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>2a</td>
<td>5-F</td>
<td>H</td>
<td>N(CH3)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2b</td>
<td>5-Cl</td>
<td>H</td>
<td>N(CH3)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2c</td>
<td>5-Br</td>
<td>H</td>
<td>N(CH3)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2d</td>
<td>6-CF3</td>
<td>H</td>
<td>N(CH3)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2e</td>
<td>5-CH3</td>
<td>H</td>
<td>N(CH3)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2f</td>
<td>5-F</td>
<td>6-Cl</td>
<td>N(CH3)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2g</td>
<td>6-Cl</td>
<td>8-Cl</td>
<td>N(CH3)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2h</td>
<td>5-F</td>
<td>6-Cl</td>
<td>N(C4H9)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2i</td>
<td>6-Cl</td>
<td>8-Cl</td>
<td>N(C4H9)2</td>
<td></td>
<td>56</td>
<td>10</td>
</tr>
<tr>
<td>2j</td>
<td>5-F</td>
<td>H</td>
<td>Piperidine</td>
<td></td>
<td>65</td>
<td>2.5</td>
</tr>
<tr>
<td>2k</td>
<td>5-F</td>
<td>6-Cl</td>
<td>Piperidine</td>
<td></td>
<td>65</td>
<td>2.5</td>
</tr>
<tr>
<td>2l</td>
<td>6-Cl</td>
<td>8-Cl</td>
<td>Piperidine</td>
<td></td>
<td>65</td>
<td>2.5</td>
</tr>
<tr>
<td>2m</td>
<td>5-F</td>
<td>H</td>
<td>Morphinol</td>
<td></td>
<td>65</td>
<td>2.5</td>
</tr>
<tr>
<td>2n</td>
<td>5-F</td>
<td>6-Cl</td>
<td>Morphinol</td>
<td></td>
<td>65</td>
<td>2.5</td>
</tr>
<tr>
<td>2o</td>
<td>6-Cl</td>
<td>8-Cl</td>
<td>Morphinol</td>
<td></td>
<td>65</td>
<td>2.5</td>
</tr>
<tr>
<td>3a</td>
<td>5-F</td>
<td>H</td>
<td></td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3b</td>
<td>5-F</td>
<td>H</td>
<td></td>
<td>4-SO₃NH₂</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3c</td>
<td>5-F</td>
<td>H</td>
<td>4-F</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3d</td>
<td>5-F</td>
<td>H</td>
<td>4-Cl</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3e</td>
<td>5-F</td>
<td>H</td>
<td>4-Br</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3f</td>
<td>5-F</td>
<td>H</td>
<td>4-NO₂</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3g</td>
<td>5-F</td>
<td>H</td>
<td>2-NO₂</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3h</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3i</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3j</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3k</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3l</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3m</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3n</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3o</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3p</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3q</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3r</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3s</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3t</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3u</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3v</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3w</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3x</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3y</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
<tr>
<td>3z</td>
<td>5-F</td>
<td>H</td>
<td>4-CH₃</td>
<td>H</td>
<td>60</td>
<td>10</td>
</tr>
</tbody>
</table>

* C.a, C. albicans; C.n, C. neoformans; S.s, S. schenckii; E.f, E. floccosum; T.r, T. rubrum; M.g, M. gypseum.

Appropriate amines in dry benzene. Primary aromatic amines do not usually give corresponding Mannich bases with the above procedure. However, stirring 2a with primary aromatic amines in ethanol at room temperature was found to give the corresponding Mannich bases in good yield. The 3-benzylmethylene thiochromanones 4a-g were obtained from an Aldol-condensation reaction of 1a-g and appropriate arylaldehydes under catalysis of H2SO4. Compounds 1a-g were treated with an equivalent Br2 in acetic acid to give 3-bromo thiochromanones, compounds 5a-g, followed by oxidation with H2O2 in acetic acid at room temperature to yield 6a-g. The structures of all synthesized compounds have been confirmed by elemental analysis, IR, H1-NMR, and HRMS (See Supplemental data).

2.2. Evaluation of antifungal activity

The prepared 3-substituted thiochromanones were evaluated for their in vitro antifungal activity against six isolates of fungi in Sabouraud medium according to consecutive double dilution to give their minimum inhibitory concentrations (MIC). Ketoconazole was used as a control drug. In brief, the assay was conducted as follows: the synthesized compounds and

www.ddtjournal.com
potent activity against tested. On the whole, all compounds demonstrated certain level of antifungal activity against the fungi in the present study. All compounds tested had an activity of 3-substituted thiochromanones synthesized Table 1 summarizes the structures and antifungal activities of the Mannich bases of thiochromanones. The aromatic Mannich base derivatives displayed better activity against all fungi tested. Antifungal activity of the most potent compounds, 2f and 2g, was more effective than that of the control drug, ketoconazole, against C. albicans, C. neoformans, and T. rubrum. This activity was comparable to that of ketoconazole against S. schenckii, E. floccosum, and M. gypsym. The 3-benzylmethylene derivatives, compounds 3a–i, displayed potent activity against E. floccosum and T. rubrum but weaker activity against C. albicans, C. neoformans, and S. schenckii. The 3-benzyllidene derivatives, compounds 4a–g, demonstrated similar activity; however, compound 4b was as effective as ketoconazole against T. rubrum, 4d was similarly as effective against S. schenckii and M. gypsym, and 4e and 4f were similarly as effective against C. albicans. Among the 3-bromo thiochromanones, 5a displayed excellent activity against C. albicans and M. gypsym and was twice as active as ketoconazole. Compound 5d was as effective as ketoconazole against M. gypsym, and other compounds had lower activity. The oxidation derivative compounds 6a–g did not have clearly increased activity, and did not demonstrate the activity that was expected. The current efforts, though not as successful as hoped, should nonetheless help in the discovery of new antifungal agents.

3. Results and Discussion

Table 1 summarizes the structures and antifungal activity of 3-substituted thiochromanones synthesized in the present study. All compounds tested had a certain level of antifungal activity against the fungi tested. On the whole, all compounds demonstrated potent activity against T. rubrum and M. gypsym. The series of Mannich base derivatives displayed better activity against all fungi tested. Antifungal activity of the most potent compounds, 2f and 2g, was more effective than that of the control drug, ketoconazole, against C. albicans, C. neoformans, and T. rubrum. This activity was comparable to that of ketoconazole against S. schenckii, E. floccosum, and M. gypsym. The aromatic Mannich base derivatives, compounds 3a–i, displayed potent activity against E. floccosum and T. rubrum but weaker activity against C. albicans, C. neoformans, and S. schenckii. The 3-benzylmethylene derivatives, compounds 4a–g, demonstrated similar activity; however, compound 4b was as effective as ketoconazole against T. rubrum, 4d was similarly as effective against S. schenckii and M. gypsym, and 4e and 4f were similarly as effective against C. albicans. Among the 3-bromo thiochromanones, 5a displayed excellent activity against C. albicans and M. gypsym and was twice as active as ketoconazole. Compound 5d was as effective as ketoconazole against M. gypsym, and other compounds had lower activity. The oxidation derivative compounds 6a–g did not have clearly increased activity, and did not demonstrate the activity that was expected. The current efforts, though not as successful as hoped, should nonetheless help in the discovery of new antifungal agents.

References

(Received July 07, 2008; Accepted August 02, 2008)

Supplementary data

All final compounds were characterized by elementary analysis, IR, 1H-NMR and HRMS. Data for compound:
1g: m.p. 81-82°C; IR (KBr) 1685, 1557, 1475, 880 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, DMSO-\(d_{6}\)) \(\delta\) 2.9-3.3 (4H, m), 7.6 (1H, d), 8.1 (1H, d); HRMS (M\(^{+}\)) calced for C\(_{12}H_{13}Cl_{2}O_{2}S 349.9935, found 349.9950.
2f: m.p. 165-166°C; IR (KBr) 2670, 1570, 1530, 1200, 850 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, DMSO-\(d_{6}\)) \(\delta\) 3.3-3.9 (6H, m), 4.3-4.7 (5H, m), 7.4 (1H, d), 7.9 (1H, d); HRMS (M\(^{+}\)) calced for C\(_{12}H_{13}Cl_{2}O_{2}S 349.9954.
2g: m.p. 176-177°C; IR (KBr) 2700, 1570, 1330, 1225, 845 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, DMSO-\(d_{6}\)) \(\delta\) 3.0-3.7 (6H, m), 4.8 (5H, m), 7.3 (1H, d), 7.8 (1H, d); HRMS (M\(^{+}\)) calced for C\(_{12}H_{13}Cl_{2}O_{2}S 349.9954.
3e: m.p. 110-112°C; IR (KBr) 3400, 1665, 1600, 1470, 1270, 895, 820 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, DMSO-\(d_{6}\)) \(\delta\) 3.1 (3H, m), 3.5-3.7 (2H, q), 4.1-4.8 (1H, s), 6.5 (1H, d), 7.1-7.4 (4H, m), 7.8 (1H, d); HRMS (M\(^{+}\)) calced for C\(_{12}H_{13}BrFNO\(_{2}\)S 289.0109, found 289.0109.
4g: m.p. 148-149°C; IR (KBr) 2830, 1650, 1545, 1480, 840, 800 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, DMSO-\(d_{6}\)) \(\delta\) 3.6 (3H, s), 4.0 (2H, s), 6.6-7.0 (4H, m), 7.1 (1H, s), 7.8 (1H, d), 8.0 (1H, d); HRMS (M\(^{+}\)) calced for C\(_{12}H_{13}Cl_{2}O_{2}S 349.9935, found 349.9950.
5g: m.p. 108-109°C; IR (KBr) 1700, 1575, 1470, 880 cm\(^{-1}\); \(^{1}H\)-NMR (300 MHz, DMSO-\(d_{6}\)) \(\delta\) 3.5-3.8 (2H, m), 4.8-5.0 (1H, m), 7.6 (1H, d), 8.1 (1H, d); HRMS (M\(^{+}\)) calced for C\(_{12}H_{13}BrCl_{2}O\(_{2}\)S 309.8622, found 309.8637.

www.ddtjournal.com
Transdermal patch incorporating salbutamol sulphate: *In vitro* and clinical characterization

Nashwa A. El-Gendy1,*, Nirmeen A. Sabry2, Mai El-Attar3, Emad Omar4, Manal Mahmoud5

1 Pharmaceutics Department, Faculty of Pharmacy, Beni-suef University, Beni-suef, Egypt; 2 Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt; 3 Chest Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt; 4 Intensive Care Unit, Faculty of Medicine, Cairo University, Cairo, Egypt; 5 Internal Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.

ABSTRACT: Eudragit patches containing salbutamol sulphate were prepared and evaluated as a rate-controlling membrane for transdermal use. The effect of different Eudragit polymers and various plasticizers on the permeability and mechanical properties of the prepared patches were studied. Drug patches of Eudragit polymers were prepared by a casting method employing methanol as a solvent and dibutylphthalate, polyethylene glycol 400, Propylene glycol, and triacetin as plasticizers. These patches were evaluated for weight and thickness uniformity, swelling index, tensile strength, percentage of elongation, and moisture absorption capacity. **In-vitro** release characteristics of these patches were studied and analyzed. The patches were found to have a uniform thickness. Patches prepared using Eudragit RS 100 (T8) as well as RS100 + L100 in a ratio of 3:1 (T15) plasticized with triacetin were found to have a tensile strength lower than that of other patches. Permeability characteristics of selected patches were studied. Patch formulations T8 and T15 containing 10% oleic acid and 5% dimethyl formamide as penetration enhancers, respectively, displayed the highest permeability to salbutamol sulphate. These two formulations were selected for further clinical investigation and although both resulted in improvement in respiratory function tests, only the first formulation resulted in significant improvement.

Keywords: Salbutamol Sulphate, Transdermal patches, Asthma, Respiratory function

1. **Introduction**

Salbutamol sulphate (SS) is widely used for the therapeutic management and prophylaxis of asthma and nocturnal asthma in particular (1). Although SS is considered to be the drug of choice for the treatment of asthma, it has several drawbacks such as its short biological half-life of about 4-6 hours (2) and its susceptibility to extensive first-pass metabolism, thus requiring frequent administrations by both oral and inhalation routes. It has a short duration of action, low peak plasma level of 1.2 μg/mL, and poor bioavailability of only 14.8% (3). These factors necessitated formulation of a controlled-release drug delivery system for SS.

A transdermal patch is a medicated adhesive patch that is placed on the skin to deliver a time-released dose of medication through the skin in order to treat systemic illnesses. Such a system offers a variety of significant clinical benefits over other methods of administration. For example, it provides controlled release of the drug to the patient and enables a steady blood-level profile, leading to reduced systemic side effects, and sometimes provides improved efficacy over other dosage forms (4-6). In addition, the dosage form of transdermal patches is user-friendly, convenient, and painless. The generally accepted view is that they offer improved patient compliance (7).

The present work is an attempt to incorporate SS into the transdermal drug delivery system (TDDS) employing various types of Eudragits. The aim is to monitor the release of SS to maintain its therapeutic levels and evaluate it clinically as well. Hence, SS was selected as it undergoes first-pass metabolism and has a short half-life, thus presenting a challenge in terms of achieving controlled transdermal delivery of SS.

www.ddtjournal.com
2. Materials and Methods

2.1. Materials

SS was donated by Amoun Co., Cairo, Egypt. Eudragit L100-55, RS100, RL100, S100, and L100 were purchased from Rhom Pharm GmBH Weiterstadt, Germany. Triacetin, polyethylene glycol 400 (PEG 400), dibutylphthalate (DBP), n-octanol (NO), and dimethyl formamide (DMF) were purchased from Sigma-Aldrich, USA. Propylene glycol (PG), methanol, oleic acid (OA), sodium chloride, potassium dihydrogen phosphate, disodium hydrogen phosphate, magnesium chloride, sodium nitrite, and potassium sulphate were purchased from Adwic, El-Nasr Chemical Co., Cairo, Egypt. Double-distilled water was used throughout the study.

2.2. Preparation of salbutamol sulphate transdermal patches

The transdermal patches of SS were prepared by a solvent casting technique using different types of Eudragit polymers (RS100, RL100, L100-55, L100 and S100) (8). An alcoholic solution of SS was prepared in which the weighed amount (5 mg) of the drug was dispersed in 10 mL methanol. Different Eudragit polymers (5%, w/v) were added to the alcoholic drug solution while stirring to ensure uniform distribution. Lastly, the plasticizer was added to protect the polymeric patches from brittleness upon storage. The plasticizers used were DBP, PEG 400, PG, and triacetin in different concentrations. The dispersion processes were prepared using a magnetic stirrer (Thermolyne Corporation, USA) providing constant stirring (500 rpm) at room temperature until clear solutions were obtained. The compositions of the tested transdermal patches are shown in Table 1.

Measured volumes (10 mL) of the polymeric solutions were poured onto a plastic substrate (circular dish of 57 mm diameter and 8 mm depth) and dried on a level bench at room temperature for 24 h with an inverted funnel overhead to provide a uniform rate of evaporation. The formulated patches were allowed to equilibrate in a desiccator over anhydrous calcium chloride for another 24 h before the evaluation process to ensure total hydration and to exclude entrapped air (9). The patches were evaluated within one week of the casting date.

2.3. In-vitro characterization of the prepared salbutamol sulphate transdermal patches

2.3.1. Uniformity of initial drug content

For drug content determination, the total content of transdermal systems (n = 3) was placed in a 100 mL volumetric flask and dissolved in methanol. The solution was filtered through a Whatman filter membrane (0.45 μm) prior to spectrophotometric drug analysis at 276 nm (Shimadzu, model UV-1601 PC, Kyoto, Japan).

2.3.2. Uniformity of patch weight and thickness

Three randomly selected patches of each formulation were weighed and their average weight was calculated. Patch thickness was determined using calipers (Vernier Caliper, Shanghai, China) and recorded. Results were reported as the mean (± S.D.) of five measurements (the four corners and the center of each patch).

2.3.3. Percent dissolution and swelling index (SI) of the transdermal patches

The patches were dried in a desiccator over anhydrous calcium chloride at ambient temperature until a constant weight was obtained (W1); then, they were immersed for 3 days in 100 mL distilled water at 37°C. Excess water present on the swollen patches was removed by careful patch blotting with filter paper. The patches were reweighed (W2), returned to the desiccator, and dried to a constant weight; then, they were reweighed again (W3) (10).

\[
\text{% dissolution} = \frac{W_2 - W_1}{W_1} \times 100
\]

The swelling index (SI) was determined from the amount of water absorbed per unit weight of undissolved patches retrieved from the distilled water after immersion (10).

\[
\text{SI} = \frac{W_2 - W_3}{W_3} \times 100
\]

Table 1. Composition of SS loaded Eudragit patches in each formula (%)

<table>
<thead>
<tr>
<th>Formula</th>
<th>Eudragit type</th>
<th>Plasticizer</th>
<th>Plasticizer concentration (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>RL100</td>
<td>PEG 400</td>
<td>40</td>
</tr>
<tr>
<td>T2</td>
<td>RL100</td>
<td>PG</td>
<td>50</td>
</tr>
<tr>
<td>T3</td>
<td>RL100</td>
<td>DBP</td>
<td>30</td>
</tr>
<tr>
<td>T4</td>
<td>RL100</td>
<td>Triacetin</td>
<td>30</td>
</tr>
<tr>
<td>T5</td>
<td>RS100</td>
<td>PEG 400</td>
<td>50</td>
</tr>
<tr>
<td>T6</td>
<td>RS100</td>
<td>PG</td>
<td>50</td>
</tr>
<tr>
<td>T7</td>
<td>RS100</td>
<td>DBP</td>
<td>30</td>
</tr>
<tr>
<td>T8</td>
<td>RS100</td>
<td>Triacetin</td>
<td>20</td>
</tr>
<tr>
<td>T9</td>
<td>L100-55</td>
<td>PEG 400</td>
<td>40</td>
</tr>
<tr>
<td>T10</td>
<td>L100-55</td>
<td>PG</td>
<td>50</td>
</tr>
<tr>
<td>T11</td>
<td>L100-55</td>
<td>Triacetin</td>
<td>30</td>
</tr>
<tr>
<td>T12</td>
<td>RS100 + L100</td>
<td>PEG 400</td>
<td>40</td>
</tr>
<tr>
<td>T13</td>
<td>RS100 + L100</td>
<td>PG</td>
<td>50</td>
</tr>
<tr>
<td>T14</td>
<td>RS100 + L100</td>
<td>DBP</td>
<td>30</td>
</tr>
<tr>
<td>T15</td>
<td>RS100 + L100</td>
<td>Triacetin</td>
<td>30</td>
</tr>
<tr>
<td>T16</td>
<td>RS100 + S100</td>
<td>PEG 400</td>
<td>40</td>
</tr>
<tr>
<td>T17</td>
<td>RS100 + S100</td>
<td>PG</td>
<td>50</td>
</tr>
<tr>
<td>T18</td>
<td>RS100 + S100</td>
<td>DBP</td>
<td>30</td>
</tr>
<tr>
<td>T19</td>
<td>RS100 + S100</td>
<td>Triacetin</td>
<td>30</td>
</tr>
<tr>
<td>T20</td>
<td>RS 100 + RL100</td>
<td>DBP</td>
<td>30</td>
</tr>
</tbody>
</table>
Results were reported as the mean (± S.D.) of three replicates.

2.3.4. Moisture absorption capacity of the patches

The water absorption capacities of various films were determined at 33, 65, and 97% relative humidity (RH). Films were cut into 1 × 1 cm strips. The strips were conditioned by weighing; they were placed in a desiccator at 40°C for 24 h, removed, and exposed to conditions of 33% RH (containing saturated solution of magnesium chloride), 65% RH (containing saturated solution of sodium nitrate), and 97% RH (containing saturated solution of potassium sulphate) in different desiccators at room temperature. Weight was measured periodically every 48 h for 14 days until a constant weight was obtained. The moisture absorption capacity of the films (weight %) was calculated in terms of percentage increase in the weight of film over the initial weight of the specimen (11,12).

2.3.5. Mechanical properties of salbutamol sulphate patches

The tensile strength, the film’s percentage elongation at break, and the modulus of elasticity (Young’s Modulus) were determined using a tensile strength tester (TN-30 code N 9112-ID, India). Patch strips 1 cm in width were grasped using an upper and lower flat-faced metal grip laminated with a smooth rubber grip. The distance between the grips was set at 2 cm and this distance, therefore, represented the length of the film under stress. A speed of 5 mm/s was used for all measurements (13).

The load applied to the patch was automatically increased at a specific rate until the patch broke. Only results from films that were observed to break in the middle area of the test strip during testing were used. Results were reported as the mean (± S.D.) of five replicates. The tensile strength and elongation at break were calculated as below:

The percentage elongation at break, Eb, of tested films was determined, where E is the film’s extension to break and \(L_0 \) is its original length (14).

\[
E_b = \frac{E}{L_0} \times 100
\]

The break strength, B, of tested films was determined, where F is the break force of the film and \(A_k \) is its cross sectional area (14).

\[
B = \frac{F}{A_k}
\]

The modulus of elasticity (\(M_e \)) of the patch was calculated from Hook’s law (15).

\[
B = \frac{M_e}{(E/L_o)}
\]

2.3.6. In-vitro release studies

The in-vitro release of transdermal patches was performed with a paddle over disk method, in accordance with the US Pharmacopoeia (USP 27 apparatus 5) (16). Briefly, a volume of 250 mL freshly prepared Sorenson’s phosphate buffer pH 5.5 (dissolution medium) was placed in the vessel and the temperature of the medium was equilibrated to 32 ± 0.5°C. A patch sample on its plastic substrate was covered with a stainless steel screen disc (mesh size 100 μm) of the same size, with the release surface facing up. The assembly was prevented from floating and hitting the rotating paddle by attaching a glass disc to the bottom of the plastic substrate using cyanoacrylate adhesive. The paddle was then rotated at 50 rpm.

At predetermined time intervals over a total period of 8 h, aliquots (5 mL) were withdrawn and replaced with fresh medium. The samples were filtered through 0.45 μm Whatman filter membranes and spectrophotometrically analyzed for drug content at 276 nm. The results were the mean values of three runs. Cumulative amounts of drug released were plotted against time for different formulations. The obtained data were subsequently analyzed to determine the order of release.

2.4. In-vitro permeation studies of salbutamol patches

Abdominal skin (approximately 1 mm in thickness) from male newborn mice (age 6 days or younger) was carefully excised (Cairo University Labs, Cairo, Egypt). All animals were treated in accordance with the principles of laboratory animal care (Guide for the Care and Use of Laboratory Animals, 1985) (17).

After removing the hypodermal adipose tissue, the skin was used as a barrier membrane for in-vitro transdermal permeation. When not used immediately, the skin was kept refrigerated (2-5°C) and used within 3 days (18). In-vitro mice skin permeation studies were performed in vertical Franz-type glass single diffusion cells (Keshary-Chien type) (19-21). The volume of the receptor cell was 17 mL and the effective surface area available for permeation was 3.14 cm². Briefly, the freshly excised mice skin was mounted between the donor and receptor cells such that the epidermal surface faced the donor compartment. Each prepared patch was placed on the stratum corium side of the skin, after which the receptor cells were filled with PBS and thermostated at 37°C by placement in a water bath. The hydrodynamics of the receptor fluid were maintained by stirring the fluid at 600 rpm in order to prevent any boundary layer effects. At predetermined time intervals over a period of 24 h, the receptor solution was sampled (200 μL), filtered through a 0.25-μm filter membrane, and analyzed by HPLC in order to determine the extent of the permeated drug. Briefly, SS concentration was analyzed using a reverse-phase HPLC method in order to determine the extent of the permeated drug. A Shimadzu HPLC system including a solvent delivery
pump (Shimadzu LC-10AT), a controller (Shimadzu SCL-10A), and a UV detector (Shimadzu SPD-10A) was used in this study. A 3.9 × 150 mm long NOVA-Pack C18 60A, 4U, cartridge column (Agilent C) with a particle diameter of 3.5 μm was used. During the assay, SS was eluted isocratically at a flow rate of 1.2 mL/min and monitored with a UV detector operating at 276 nm. The mobile phase for the assay consisted of a mixture of water, methanol, and acetonitrile (70:20:10, v/v/v) pH-adjusted to 2.5 by 10% phosphoric acid. The run time for the assay was 10 min, and the retention time for SS was 3.0 min (22).

The same volume of fresh PBS was supplied to the receptor after each sampling. Each permeation experiment was replicated at least 3 times.

Three permeation enhancers, namely 10% OA, 5% DMF, and 5% NO (%w/w of the dry polymer weigh), were incorporated separately into selected patch formulations (T8 and T15) that produced optimum results in all previous tests. Data on the permeation of SS through hairless mice skin was graphically plotted as the cumulative amount of the permeated drug per unit area as a function of time, from which the permeation parameters were calculated including the cumulative amount of the permeated drug per unit area after 24 h (Q24), steady state flux (Jss), apparent permeability coefficient (Papp), lag time (tlag), diffusion constant (D), and the enhancement ratio for the permeability coefficient (ER) (23-25).

2.5. Determination of clinical efficacy of the selected formulations

Two optimum formulations (according to the in-vitro parameters) were selected for further clinical investigation in asthmatic patients after they satisfied optimum physical, mechanical, and release parameters.

Subjects: Subjects were selected from 30 adult patients who were newly admitted to the Chest Department of Ain shams University Hospitals and the ICU of El-Kasr El-Aini Teaching Hospital complaining of asthmatic attacks. Patients were recruited to investigate the clinical efficacy of selected patches and all had to be diagnosed with acute asthma to serve as subjects. All selected asthmatics (mild and moderate) were non-smokers and met the criteria mentioned in the new Egyptian guidelines for the diagnosis and management of asthma (26). The study was approved by the Ethics Committee of both Ain Shams University Hospital and El-Kasr El-Aini Teaching Hospital and the research followed the tenets of the Declaration of Helsinki promulgated in 1964.

Protocol: The study adopted an open randomized, parallel design. All patients were subjected to the following after providing written consent:

An initial screening that included a medical history, physical examination, vital signs, ECG, plain chest X-ray, liver function tests, kidney function tests, and fasting and postprandial blood glucose levels.

Pulmonary function tests with a spirometer (Cosmed Pony Graphics version 3.2 E-MB) at the Pulmonary Function Laboratory of the Chest Department and Critical Care Unit at Ain-Shams University Hospital and Kasr El-Aini Hospital, respectively; tests included FVC, FEV1, and FEV1/FVC. All pulmonary function tests were performed for each subject before and after the study.

To objectively assess the impact of intervention, these parameters were scored and a composite score was then calculated. Heart rate and respiratory rate were counted and scored.

NB: The exclusion criteria included evidence of acute or chronic infection, pregnancy, breast-feeding or any chronic medical illness other than asthma, oral steroid therapy, and FEV1 < 60% of the predicted value (Severe asthmatic patients).

The recruited patients were randomly classified into two groups:

Group I: 15 patients receiving formulation T8/OA (equivalent to 5 mg Salbutamol).

Group II: 15 patients receiving formulation T15/DMF (equivalent to 5 mg Salbutamol).

The transdermal patch was applied onto the anterior surface of the forearm near the elbow. The patients were instructed not to remove the patch and also to look for any sign of irritation at the site of application. The patch was removed after 24 h. At the conclusion of the study, a physical examination including vital signs and ECG were re-performed. The patients were discharged after suitable medication to ensure a reasonably safe FEV1 and were asked to continue with their regular medication.

2.6. Statistical analysis

Unless indicated, results are presented as mean ± standard deviation (S.D.). One-way analysis of variance (ANOVA) was used to determine significance among groups, after which post hoc tests with the Bonferroni correction were used for comparison between individual groups. Other statistical comparisons were done by the Mann-Whitney test for nominal continuous data, Wilcoxon signed rank test to compare mean differences in the data, and the Chi-squared (X²) test for categorical data; a p value of < 0.05 was considered significant.

Statistical Package for Social Science (SPSS) was used for data analysis.

3. Results and Discussion

3.1. In-vitro characterization of the prepared salbutamol sulphate transdermal patches

3.1.1. Uniformity of initial drug content, weight, and thickness

SS patches were evaluated for their physical parameters
Table 2. Physical characterization, drug content, % dissolution and SI of SS transdermal patches

<table>
<thead>
<tr>
<th>Formula</th>
<th>Drug content (% ± S.D.)</th>
<th>Uniformity of weigh (gm) (average ± S.D.)</th>
<th>Uniformity of thickness (mm) (average ± S.D.)</th>
<th>% Dissolution (average ± S.D.)</th>
<th>SI (average ± S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>91.62 ± 0.877</td>
<td>0.547 ± 0.076</td>
<td>0.131 ± 0.003</td>
<td>14.82 ± 0.255</td>
<td>1.362 ± 0.172</td>
</tr>
<tr>
<td>T2</td>
<td>93.1 ± 0.909</td>
<td>0.525 ± 0.033</td>
<td>0.154 ± 0.030</td>
<td>14.38 ± 0.566</td>
<td>1.858 ± 0.215</td>
</tr>
<tr>
<td>T3</td>
<td>94.47 ± 2.046</td>
<td>0.507 ± 0.068</td>
<td>0.144 ± 0.023</td>
<td>11.18 ± 2.574</td>
<td>0.403 ± 0.088</td>
</tr>
<tr>
<td>T4</td>
<td>88.24 ± 1.782</td>
<td>0.523 ± 0.016</td>
<td>0.135 ± 0.038</td>
<td>14.32 ± 0.976</td>
<td>0.175 ± 0.011</td>
</tr>
<tr>
<td>T5</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>T6</td>
<td>89.52 ± 1.810</td>
<td>0.678 ± 0.017</td>
<td>0.162 ± 0.055</td>
<td>5.57 ± 0.325</td>
<td>0.0814 ± 0.008</td>
</tr>
<tr>
<td>T7</td>
<td>92.6 ± 1.521</td>
<td>0.491 ± 0.014</td>
<td>0.156 ± 0.023</td>
<td>1.876 ± 0.461</td>
<td>0.398 ± 0.020</td>
</tr>
<tr>
<td>T8</td>
<td>94.23 ± 1.541</td>
<td>0.603 ± 0.008</td>
<td>0.158 ± 0.011</td>
<td>3.955 ± 0.516</td>
<td>0.255 ± 0.059</td>
</tr>
<tr>
<td>T9</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>T10</td>
<td>88.35 ± 0.495</td>
<td>0.563 ± 0.059</td>
<td>0.163 ± 0.003</td>
<td>24.02 ± 0.679</td>
<td>0.903 ± 0.041</td>
</tr>
<tr>
<td>T11</td>
<td>89.24 ± 2.503</td>
<td>0.573 ± 0.008</td>
<td>0.146 ± 0.006</td>
<td>15.92 ± 0.551</td>
<td>0.529 ± 0.037</td>
</tr>
<tr>
<td>T12</td>
<td>90.24 ± 2.630</td>
<td>0.549 ± 0.038</td>
<td>0.138 ± 0.006</td>
<td>11.51 ± 0.707</td>
<td>0.438 ± 0.088</td>
</tr>
<tr>
<td>T13</td>
<td>93.61 ± 5.020</td>
<td>0.622 ± 0.013</td>
<td>0.129 ± 0.003</td>
<td>12.75 ± 0.650</td>
<td>0.282 ± 0.030</td>
</tr>
<tr>
<td>T14</td>
<td>92.57 ± 0.792</td>
<td>0.603 ± 0.012</td>
<td>0.157 ± 0.004</td>
<td>4.38 ± 1.032</td>
<td>0.149 ± 0.038</td>
</tr>
<tr>
<td>T15</td>
<td>88.73 ± 1.457</td>
<td>0.628 ± 0.023</td>
<td>0.159 ± 0.001</td>
<td>4.74 ± 0.720</td>
<td>0.087 ± 0.018</td>
</tr>
<tr>
<td>T16</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>T17</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>T18</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>T19</td>
<td>96.23 ± 2.701</td>
<td>0.628 ± 0.054</td>
<td>0.162 ± 0.006</td>
<td>5.97 ± 0.481</td>
<td>0.25 ± 0.071</td>
</tr>
<tr>
<td>T20</td>
<td>94.36 ± 1.754</td>
<td>0.622 ± 0.027</td>
<td>0.148 ± 0.004</td>
<td>13.95 ± 0.525</td>
<td>1.355 ± 0.205</td>
</tr>
</tbody>
</table>

1Statistically significant, ANOVA, p < 0.05; 2Statistically significant, ANOVA, p < 0.001; 3Not applicable.

3.1.2. Percent dissolution and swelling index (SI) of the transdermal patches

The incorporation of plasticizers in Eudragit patches has weakened its resistance to solubility in distilled water. This can be attributed to the fact that plasticizer molecules increase the flexibility of Eudragit molecules and render the patches more permeable to the water molecules (29). Of the plasticizers used, PG was found to be the most effective in reducing the water resistance of Eudragit patches while DBP was the least effective (Table 2).

As is apparent from Table 2, the percent dissolution increased with the incorporation of Eudragit RL100 (T1-T4) and L100-55 (T9-T11) compared to the patches prepared with RS100 (T5-T7). Moreover, addition of Eudragits L100, S100, and RL100 to RS100 in the prepared patches (T12-T14) in a ratio of 1:3 led to increased percent dissolution. This may be attributed to the increase in the freely permeable resin in water as a result of using these polymers (30).

The water uptake capacity of the patch was measured by the swelling index (SI). The data in Table 2 revealed that transdermal patches containing Eudragit L100-55 and RL100 exhibited the highest SI in comparison to other formulations. These results suggest that these patches would be more permeable to the drug. This may be due to the porosity generated in the remnants of the patches after dissolution (31).

3.1.3. Moisture absorption capacity of the patches

Moisture absorption of polymeric patches affects both the mechanical properties and the drug release pattern. Moisture absorption capacities under different humidity conditions (Figure 1) revealed that the moisture uptake of the patches depended on the type of both Eudragit and plasticizer used.

Moisture absorption in 97% RH is relatively high and the weight of most patches significantly increased in comparison to other levels of RH. The highest absorption capacities within 2 weeks were 4.22%, 7.325%, and 10.73% for those prepared using Eudragit L100-55 and PG while the lowest (1.811, 3.993 and 6.304) were recorded for Eudragit RS100 patches containing DBP at 33%, 65%, and 97% RH, respectively.

As is apparent, Eudragit L100-55 and RL100 formulated patches plasticized with any of the aforementioned plasticizers absorbed water to a greater extent than did patches containing Eudragit RS100. Also obvious is the fact that inclusion of Eudragits L100, S100, or RL100 in RS100 led to increased water absorbing ability of the prepared patches. This could be due to the hydrophilic nature of these Eudragits compared to Eudragit RS100 alone. This hydrophilic nature may be attributed to the fact that Eudragit RL polymers contain double the quaternary ammonium groups of Eudragit RS. Moreover, Eudragit L100-55 is a free-flowing powder that is dispersible in water and dissolves above pH 5.5. The higher methacrylic acid content of Eudragits L100 and S100 increases their hydrophilic characteristics (32).
The physicomechanical properties of patches are among the factors that determine the suitability and acceptability of prepared patches. The tensile strength, % elongation, and modulus of elasticity were determined for the prepared patches. All results of mechanical properties are shown in Table 3. The tensile strength ranged from 0.015 kg/cm² for T₁ to 1.205 kg/cm² for T₂. Percent elongation ranged from 4.19% for T₁ to 208.22% for T₈. Optimum mechanical properties were clearly obtained from transdermal SS patches (T₈) containing RS100 and SS100.

Table 3. Mechanical properties of salbutamol sulphate transdermal patches

<table>
<thead>
<tr>
<th>Formula</th>
<th>Elongation % (average ± S.D.)</th>
<th>Tensile strength (Kg/cm²) (average ± S.D.)</th>
<th>Modulus of elasticity (average ± S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T₁</td>
<td>4.19 ± 0.438</td>
<td>1.205 ± 0.177</td>
<td>28.75 ± 2.475</td>
</tr>
<tr>
<td>T₂</td>
<td>9.27 ± 0.325</td>
<td>0.62 ± 0.042</td>
<td>6.62 ± 0.552</td>
</tr>
<tr>
<td>T₃</td>
<td>24.95 ± 1.500</td>
<td>0.071 ± 0.016</td>
<td>0.284 ± 0.040</td>
</tr>
<tr>
<td>T₄</td>
<td>16.98 ± 0.480</td>
<td>0.105 ± 0.057</td>
<td>0.618 ± 0.145</td>
</tr>
<tr>
<td>T₅</td>
<td>N/A</td>
<td>0.0652 ± 0.008</td>
<td>0.0857 ± 0.008</td>
</tr>
<tr>
<td>T₆</td>
<td>76.03 ± 1.541</td>
<td>0.055 ± 0.014</td>
<td>0.0598 ± 0.003</td>
</tr>
<tr>
<td>T₇</td>
<td>91.85 ± 1.154</td>
<td>0.015 ± 0.007</td>
<td>0.0072 ± 0.003</td>
</tr>
<tr>
<td>T₈</td>
<td>208.22 ± 2.531</td>
<td>0.0659 ± 0.023</td>
<td>0.1716 ± 0.042</td>
</tr>
<tr>
<td>T₉</td>
<td>38.4 ± 0.990</td>
<td>0.11 ± 0.109</td>
<td>0.765 ± 0.066</td>
</tr>
<tr>
<td>T₁₀</td>
<td>14.37 ± 1.1880</td>
<td>0.3125 ± 0.141</td>
<td>2.637 ± 0.528</td>
</tr>
<tr>
<td>T₁₁</td>
<td>11.85 ± 0.976</td>
<td>0.72 ± 0.242</td>
<td>3.17 ± 0.467</td>
</tr>
<tr>
<td>T₁₂</td>
<td>22.71 ± 1.640</td>
<td>0.06 ± 0.038</td>
<td>0.0609 ± 0.017</td>
</tr>
<tr>
<td>T₁₃</td>
<td>197.99 ± 2.84</td>
<td>0.04 ± 0.008</td>
<td>0.0202 ± 0.002</td>
</tr>
<tr>
<td>T₁₄</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>T₁₅</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>T₁₆</td>
<td>20.19 ± 1.782</td>
<td>0.075 ± 0.021</td>
<td>0.371 ± 0.058</td>
</tr>
<tr>
<td>T₁₇</td>
<td>12.303 ± 1.427</td>
<td>0.13 ± 0.143</td>
<td>1.0566 ± 0.514</td>
</tr>
</tbody>
</table>

*Statistically significant, ANOVA, p < 0.05; †Statistically significant, ANOVA, p < 0.01; ‡Not applicable.

Also of note is the fact that lower water absorption capacity was achieved in the presence of DBP than with the other plasticizers used. This is possibly attributed to the limited water affinity of DBP (33).

3.1.4. Mechanical properties of salbutamol sulphate transdermal patches

The physicomechanical properties of patches are among

Figure 1. Moisture absorption capacity of salbutamol sulphate transdermal patches at a: 33% RH, b: 65% RH and c: 97% RH.
triacetin, followed by patches (T15) containing RS100 + L100 and triacetin. This could be due to the high affinity of triacetin for water, which contributes to its elongation ability.

3.1.5. In-vitro release of salbutamol sulphate from the prepared patches

Drug release testing is a crucial part of the development of transdermal patches as it helps to ensure the batch-to-batch uniformity of each drug delivery system and to evaluate the release rate of the drug from the prepared formulations (34). Even though body temperature is maintained at 37°C, the temperature of the skin surface is 32°C (35). This is why the temperature of the dissolution medium was kept at 32 ± 0.5°C. Sorensen’s phosphate buffer of pH 5.5, used as a dissolution medium, simulated the pH of the skin surface (36).

As is apparent in Figures 2 and 3, the amount of SS released from patches T10 was significantly higher ($p < 0.001$) than that released from other patches as it reached ~100% within 45 min. This might be due to the high solubility of Eudragit L100-55 in solutions of pH 5.5 and the high water affinity of PG plasticizer. A point of note is that Eudragit RL100 patches had a higher release of drug than those prepared with Eudragit RS100. This could be attributed to the lower content of quaternary ammonium groups in Eudragit RS100 than in RL100, resulting in less swelling in aqueous media. Thus, it is extensively employed in the pharmaceutical industry because of its potential for the development of controlled-release drug delivery systems (32).

In addition, inclusion of Eudragit RL100 to RS100 (1:3) (T30) led to a slight reduction in the release profile of the drug (~100% within 180 min) compared to the use of RL100 alone. In contrast, incorporation of Eudragit L100 and S100 in RS100 (1:3) (T30) led to a great reduction in the release profile of the drug compared to the use of RL100 alone but still provided a higher release profile than patches containing RS100 alone. Moreover, PG plasticizer resulted in a higher release rate of the drug, followed by PEG and then triacetin and finally DBP. Patches T7 and T14 plasticized with DBP clearly exhibited significantly lower release rates of the drug (59.975 and 69.425%, respectively). That said, a better release profile was provided by Eudragit RS100 plasticized with triacetin (T9) and Eudragit RS100 + L100 in (3:1) ratio plasticized with triacetin (T13), as they achieved 72.97 and 70.82% within 8 h, respectively.

Linear regression analysis of release data was done to determine the proper order of release. Zero-, first-, and Higuchi diffusion-controlled model equations were applied to all in-vitro release results, indicating that the drug is released from all transdermal patches via a diffusion-controlled mechanism.

3.2. In-vitro drug permeation studies

The in-vitro release studies conducted revealed that polymeric patches prepared using RS100 with 20% triacetin (T8) and a combination of RS100 and L100 in a ratio of 3:1 (T13) with 30% triacetin as a plasticizer were found to be the most suitable with respect to drug content and all of the physical parameters evaluated (Table 2). Thus, the patches T8 and T13 were considered for further in-vitro permeation studies.

The major rate-limiting step for the transport of hydrophilic drugs is their permeation through the stratum corneum. Once they have permeated through the stratum corneum, they are rapidly absorbed into the systemic circulation. As a result, hydrophilic drugs elicit poor local pharmacological response due to low retentivity in the skin layers (37). Chemical enhancers are known to enhance the influx of hydrophilic drugs across the stratum corneum. Table 4 summarizes the
Table 4. Percutaneous penetration parameters of salbutamol sulphate across abdominal mouse skin from different transdermal patches

<table>
<thead>
<tr>
<th>Formula</th>
<th>Qw (µg/cm²)</th>
<th>Jw (µg/cm²*h)</th>
<th>tlag (min)</th>
<th>Papp (cm/h) × 10⁻²</th>
<th>D (cm²/h) × 10⁺</th>
<th>ERsal</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0 control</td>
<td>198.52 ± 2.121</td>
<td>6.35 ± 0.212</td>
<td>52.79 ± 0.311</td>
<td>1.27 ± 0.071</td>
<td>3.83 ± 0.255</td>
<td>----</td>
</tr>
<tr>
<td>T0 (OA)</td>
<td>320.81 ± 1.853†</td>
<td>9.14 ± 0.184</td>
<td>49.61 ± 0.834</td>
<td>1.82 ± 0.240</td>
<td>4.08 ± 0.212</td>
<td>1.43 ± 0.099</td>
</tr>
<tr>
<td>T0 (DMF)</td>
<td>273.61 ± 3.677†</td>
<td>5.76 ± 0.077</td>
<td>49.69 ± 2.376</td>
<td>1.51 ± 0.240</td>
<td>4.07 ± 0.622</td>
<td>18 ± 0.198</td>
</tr>
<tr>
<td>T0 (NO)†</td>
<td>238.32 ± 5.968</td>
<td>7.3 ± 0.962</td>
<td>51.34 ± 0.832</td>
<td>1.96 ± 0.325</td>
<td>3.94 ± 0.382</td>
<td>1.15 ± 0.228</td>
</tr>
<tr>
<td>T15 control</td>
<td>209.73 ± 3.224</td>
<td>5.41 ± 0.410</td>
<td>54.69 ± 1.725</td>
<td>1.08 ± 0.116</td>
<td>3.70 ± 0.438</td>
<td>----</td>
</tr>
<tr>
<td>T15 (OA)</td>
<td>245.47 ± 1.626</td>
<td>5.96 ± 0.071</td>
<td>55.39 ± 2.022</td>
<td>1.19 ± 0.057</td>
<td>3.65 ± 0.495</td>
<td>1.10 ± 0.3</td>
</tr>
<tr>
<td>T15 (DMF)</td>
<td>349.36 ± 1.202†</td>
<td>9.86 ± 0.212</td>
<td>49.38 ± 1.047</td>
<td>1.97 ± 0.057</td>
<td>4.10 ± 0.297</td>
<td>1.82 ± 0.269</td>
</tr>
<tr>
<td>T15 (NO)†</td>
<td>301.84 ± 1.782†</td>
<td>8.26 ± 1.202</td>
<td>51.73 ± 2.786</td>
<td>1.65 ± 0.212</td>
<td>3.91 ± 0.297</td>
<td>1.52 ± 0.283</td>
</tr>
</tbody>
</table>

Effect of enhancers (viz OA, DMF and NO) on the steady-state flux (Jw) and permeability coefficient of SS as well as the lag time, diffusion coefficient (D), and enhancement factor (ER). Moreover, the cumulative amounts of the drug at different diffusion times are shown in Figure 1. Among the various types of enhancers studied, OA for formulation T8 and DMF for patch formulation T15 provided a higher permeability coefficient and enhancement factor (ER). An interesting finding is that OA interacts with and modifies the lipid domains of the stratum corneum because of its similar structure to these lipids (21). Electron microscopic studies have shown that OA in human stratum corneum exists as a separate phase (or as 'pools') within the bilayer lipids (38,39). The formation of such pools would result in permeability defects within the bilayer lipids, thus facilitating permeation of hydrophilic permeants through the membrane.

Considering the small, highly polar nature of DMF, it may interact with the head groups of some lipid bilayers to disrupt its backing geometry. Furthermore, DMF in skin may facilitate drug partitioning from the formulation into the skin; one study reported a 12-fold increase in the flux of caffeine permeating across human skin treated with DMF (40).

3.3. Determination of clinical efficacy of the selected formulations

The two finally selected patches, formulation T8 containing 10% OA and T15 containing 5% DMF, were tried clinically on 30 acute asthmatic patients. These formulations were found to be the most appropriate with respect to drug content and all of the physical parameters evaluated, and they also exhibited superior in-vitro release behavior and a higher permeability coefficient and enhancement factor (ER).

Out of the 30 recruited patients, 27 completed the study and 3 dropped out because their condition was exacerbated and they required nebulizers. The 27 patients that completed the study had an average age of 31.4 ± 7.11 years, ranging from 23 to 50 years (median = 30.5 years). Patients' conditions were classified as mild to moderate bronchial asthma with average disease duration of 5.2 ± 2.24 years, ranging from 2 to 9 years (median = 5 years). Baseline characteristics are shown in Table 5. There was a preponderance of females (about 2:1) in both groups. The subjects' baseline demographic parameters, vital signs, and spirometric parameters were comparable (p < 0.05).

Table 5. Demographic data, heart rate and respiratory rate for the recruited patients and their pulmonary function tests both before and after patch application

<table>
<thead>
<tr>
<th>Category</th>
<th>T8</th>
<th>T15</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients (%)</td>
<td>15 (55.56)</td>
<td>12 (44.44)</td>
</tr>
<tr>
<td>No. of males (%)</td>
<td>5 (30)</td>
<td>4 (30)</td>
</tr>
<tr>
<td>Mean age in years (SD)</td>
<td>34.1 (7.82)</td>
<td>28.0 (4.55)</td>
</tr>
<tr>
<td>Mean disease duration/year (SD)</td>
<td>5.6 (2.22)</td>
<td>4.75 (2.31)</td>
</tr>
<tr>
<td>No. of wheezing patients (%)</td>
<td>6 (40)</td>
<td>6 (50)</td>
</tr>
<tr>
<td>Mean of H.R (bpm) (SD)</td>
<td>93.0 (11.04)</td>
<td>104.13 (12.74)</td>
</tr>
<tr>
<td>Mean of R.R (bpm) (SD)</td>
<td>23.95 (5.66)</td>
<td>26.56 (7.48)</td>
</tr>
</tbody>
</table>

Pulmonary Function tests | Before | After | Before | After |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FVC (%)†</td>
<td>83.0 (5.40)</td>
<td>89.4 (7.00)</td>
<td>84.0 (5.21)</td>
<td>87.0 (8.28)</td>
</tr>
<tr>
<td>FEV, (%)</td>
<td>61.6 (3.91)</td>
<td>81.5 (17.0)</td>
<td>64.75 (6.88)</td>
<td>78.63 (15.09)</td>
</tr>
<tr>
<td>FEV,FVC%</td>
<td>62.71 (3.91)</td>
<td>75.11 (10.34)</td>
<td>62.56 (4.21)</td>
<td>75.23 (10.68)</td>
</tr>
</tbody>
</table>

SD = Standard deviation; † Statistical Significant at p < 0.05, Wicoxon signed ranks test; * Statistical Significant at p < 0.01, Wicoxon signed ranks test; FVC: Forced vital capacity; FEV,FVC: Forced expiratory volume in one second.
3:1 (T₁₂) with 30% triacetin with OA as a penetration enhancer had optimum physiochemical properties together with the greatest clinical improvement among all the tested patches.

4. Conclusion

The films of SS obtained by the solvent casting method had acceptable mechanical characteristics and satisfactory % drug release. The prepared films were transparent and had a smooth surface without any interactions between the drug and polymer.

The study demonstrates the feasibility of formulating transdermal drug delivery systems to deliver SS as part of asthma management. The transdermal formulations were found to be safe and non-reactive. Transdermal delivery of SS appears to be a better route for patients who respond well to delivery of SS, and this study demonstrates the feasibility of formulating transdermal drug delivery systems to deliver SS as part of asthma management. The transdermal formulations were found to be safe and non-reactive. Transdermal delivery of SS appears to be a better route for patients who respond well to β-agonists. In light of the present results, formulations for the transdermal delivery of SS should be further improved for durations up to several days. This is especially relevant in a country like Egypt, where inhalers are too expensive devices to be routinely used by asthmatic patients and where the inhalation technique is not adequately implemented.

Acknowledgement

The authors would like to thank Amoun Co., Cairo, Egypt, for their donation of salbutamol sulphate.

References

454-458.

(Received June 9, 2008; Revised September 5, 2008; Accepted September 13, 2008)
Establishment of a cell-based assay to screen insulin-like hypoglycemic drugs

Li Zhang, Juan-juan Hu, Guan-hua Du*

Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China.

ABSTRACT: This study sought to establish a cell-based assay to screen insulin analogs. Previous studies have proposed that up-regulation of glucose consumption may have the same anti-diabetic effects as insulin. Here, the amount of glucose that disappeared in culture medium after incubation with insulin or drugs was determined and served as an indicator of the glucose consumption of the cells. In order to establish a cellular model to screen insulin analogs, the sensitivities of four cell lines - BALB/c 3T3, HepG2, NIH3T3, and Bel7402 - to insulin were evaluated by detecting glucose consumption after incubation with insulin (0-125 nM) for 24 h. BALB/c 3T3 was more sensitive to insulin than the other three cell lines. Insulin elevated glucose consumption of BALB/c 3T3 in a concentration- and time- manner. Glucose consumption of BALB/c 3T3 increased by 30% after incubation with insulin (30 nM) for 24 h. Insulin increased the proliferation of BALB/c 3T3 at 48 h. A model was established by detecting glucose consumption after treating BALB/c 3T3 with drugs for 24 h. Using the cell-based assay, we screened more than two thousand samples including compounds and natural products derived from Traditional Chinese Medicine (TCM). DF007, DF052, DF167, DF262, and DF432 (lab serial numbers) were identified as accelerating glucose consumption in a BALB/c 3T3 cell line. These active extracts may provide potential anti-diabetic drugs and warrant further study.

Keywords: BALB/c 3T3 cell, Insulin analogs, Glucose consumption, Drug screening

1. Introduction

Diabetes is a chronic metabolic disorder affecting approximately five percent of the population of industrialized nations. Insulin is essential for maintaining glucose homeostasis and regulating carbohydrate, lipid, and protein metabolism. The pathogenesis of type II diabetes includes insulin resistance and a relative deficiency in insulin secretion. Insulin stimulates a variety of cellular metabolic changes, such as glucose uptake and glycogen and lipid synthesis. The main assays for activity of insulin analogs have been reported to use radioisotopes ([1,2]. In order to find leading compounds for new insulin-like hypoglycemic drugs, a simple and sensitive high-throughput screening model that does not require radioisotopes must be established.

This study established a cell-based screening method by assaying glucose consumption. More than 2,000 samples including compounds and natural products were screened using this cellular model. The samples were derived from Traditional Chinese Medicine (TCM). DF007, DF052, DF167, DF262, and DF432 (lab serial numbers) were identified as accelerating glucose consumption in a BALB/c 3T3 cell line. These active extracts may provide potential anti-diabetic drugs and warrant further study.

2. Materials and Methods

2.1. Reagents

Insulin, MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H tetrazolium bromide), Pluronic F68, and a Glucose detection kit were obtained from Sigma. Dulbecco's modified Eagle's minimum essential medium (DMEM), RPMI 1640 medium, and Fetal bovine serum (FBS) were purchased from GIBICO. Metformin hydrochloride was purchased from Beijing Liling pharmaceutical Co. and dissolved in distilled normal saline.
2.2. Cell lines

BALB/c 3T3 was purchased from the Cell Center of Wuhan University. HepG2, NIH3T3, and Bel7402 were purchased from the Cell Center of Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences.

2.3. Maintenance of cells

BALB/c 3T3 and HepG2 were maintained in DMEM culture medium including 10% FBS, 2 mM glutamine, 100 kU/L penicillin, 100 mg/L streptomycin, and a high glucose concentration (4.5 g/L) at 37°C, 5% CO₂. NIH3T3 and Bel7402 were maintained in culture medium RPMI1640 including 10% FBS, 2 mM glutamine, 100 kU/L penicillin, and 100 mg/L streptomycin at 37°C, 5% CO₂. Cells cultures that became confluent in culture flasks were used in the glucose consumption assay.

2.4. Glucose consumption assay

Cells were detached from the culture flask with a solution of 0.25% trypsin and 1 mM EDTA. Trypsin digestion was stopped by the complete culture medium. The cells were washed twice and resuspended in low-glucose (1.0 mg/mL) detection medium supplemented with 0.05% Pluronic F68, 0.2% bactopeptone, and 2 mM glutamine. The cell density was regulated to a concentration of 1×10^5/mL and cells were spread onto 96-well microtiter plates (100 µL per well). The cells were cultured with serial insulin (final concentration 0 - 125 nM) or samples at 37°C, 5% CO₂ for 4-48 h. At the end of incubation, 10 µL suspension per well or glucose standard medium (0-1,000 mg/L) was moved to another 96-well plate well by well. The glucose concentration remaining in suspension was measured by illumination in a glucose assay. Briefly, the reaction lasted 30 min at room temperature. The absorbance at 495 nm was determined with a Polarstar microplate reader. The glucose concentration left in medium was calculated by the standard curve of glucose. The percent of glucose consumption (R_{gc}) was calculated using the following formula and IC₅₀ was determined graphically.

$$R_{gc} = (A-B)/(A-C) \times 100$$

A, concentration of glucose in medium for the control; B, concentration of glucose in medium for sample groups; C, a blank control without cells in the same medium with the control. The glucose concentration was given in µg/mL.

2.5. MTT assay

BALB/c 3T3 cells were seeded at a density of 1×10^4 cells per well in 96-well microtiter plates and cultured with insulin (30 nM) in detection medium for 24-48 h at 37°C in an atmosphere 5% CO₂. The cells were stained with MTT by a modification of the method of Mosmann (3). Briefly, the suspension medium was removed and 100 µL MTT (final concentration 5 mg/L) were added to each well 4 h before the end of incubation. After culturing for 4 h, the suspension was discarded and 150 µL dimethyl sulfoxide (DMSO) per well were added. Absorbance was read at 540 nm with a Polarstar microplate reader.

2.6. Natural product extracts

All samples were from the Sample Library of this institute. Each TCM (2 kg) was finely milled and extracted with petroleum ether, 95% alcohol, and water in turn. The samples were dissolved in DMSO and diluted with normal saline. The final DMSO concentration was less than 0.1%.

2.7. Statistical analysis

Data were given as the mean ± S.D. and the differences were calculated with a Student’s two-tail t-test. Values of $P < 0.05$ were considered to be statistically significant.

3. Results

3.1. Sensitivity of the four cell lines to insulin

BALB/c 3T3, HepG2, NIH3T3, and Bel7402 cell lines were incubated with serial diluted insulin for 24 h. Glucose consumption in medium was compared in different cells stimulated by insulin. As shown in Figure 1, insulin lowered glucose concentration in suspensions of BALB/c 3T3 and HepG2 in a dose-dependent manner. Glucose concentration tended to decrease in the suspension of Bel7402, but there was no change in glucose uptake of NIH3T3 in comparison to the control. BALB/c 3T3, HepG2, and Bel7402 were found to be sensitive to insulin. Of the cell lines, BALB/c 3T3 in particular had a high level of sensitivity, indicating its potential for use in a cell assay to screen hypoglycemic drugs.

3.2. Effect of insulin on glucose consumption in the BALB/c 3T3 cell line

Highly sensitive to insulin, the BALB/c 3T3 cell line was used to observe the dose-response and linear response curve of insulin on glucose consumption. As shown in Figure 2, insulin-accelerated glucose consumption in BALB/c 3T3 in a concentration- and time-dependent manner. Insulin of 31.25 nM was able to accelerate glucose consumption by 30% (Figure
Effect of metformin hydrochloride on glucose consumption in the BALB/c 3T3 cell line

Metformin hydrochloride accelerated glucose consumption in the BALB/c 3T3 cell line in a time-dependent manner. The glucose concentration remaining in suspension was measured as described in the Methods. All data are expressed as mean ± S.D. (n = 8). *P < 0.05, **P < 0.01, ***P < 0.001 vs. control cells without insulin treatment.

Table 1. Effect of insulin on proliferation of BALB/c 3T3. BALB/c 3T3 cells were treated with or without different concentrations of insulin for 24 h. The glucose concentration remaining in suspension was measured as described in the Methods. Values are presented as the mean ± S.D. of at least three independent experiments, n = 8.

<table>
<thead>
<tr>
<th>Insulin (nM)</th>
<th>24 h (OD)</th>
<th>48 h (OD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.89 ± 0.06</td>
<td>0.94 ± 0.05</td>
</tr>
<tr>
<td>7.8</td>
<td>0.87 ± 0.03</td>
<td>1.04 ± 0.08</td>
</tr>
<tr>
<td>15.6</td>
<td>0.92 ± 0.05</td>
<td>1.19 ± 0.04</td>
</tr>
<tr>
<td>31.25</td>
<td>0.94 ± 0.06</td>
<td>1.29 ± 0.05*</td>
</tr>
<tr>
<td>62.5</td>
<td>0.96 ± 0.09</td>
<td>1.29 ± 0.09*</td>
</tr>
<tr>
<td>125</td>
<td>0.99 ± 0.08</td>
<td>1.35 ± 0.06*</td>
</tr>
</tbody>
</table>

*P < 0.05 compared to the control.

3.4. Effect of metformin hydrochloride on glucose consumption in the BALB/c 3T3 cell line

Metformin hydrochloride accelerated glucose consumption in the BALB/c 3T3 cell line in a time-dependent manner. The glucose concentration remaining in suspension was measured as described in the Methods. All data are expressed as mean ± S.D. (n = 8). *P < 0.05, **P < 0.01, ***P < 0.001 vs. control cells without insulin treatment.
Effect of metformin hydrochloride on glucose consumption in BALB/c 3T3. BALB/c 3T3 cells were treated with or without insulin or metformin for 24 h. The glucose concentration remaining in suspension was measured as described in the Methods. Values are expressed as mean ± S.D. (n = 8).

Table 2. Effect of metformin hydrochloride on glucose consumption in BALB/c 3T3. BALB/c 3T3 cells were treated with or without insulin or metformin for 24 h. The glucose concentration remaining in suspension was measured as described in the Methods. Values are expressed as mean ± S.D. (n = 8).

<table>
<thead>
<tr>
<th>Group</th>
<th>Dose (M)</th>
<th>Glucose (mg/L)</th>
<th>%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>-</td>
<td>644.56 ± 55.79</td>
<td></td>
</tr>
<tr>
<td>Insulin</td>
<td>3 × 10^-6</td>
<td>423.95 ± 31.04</td>
<td>34.99</td>
</tr>
<tr>
<td>Metformin hydrochloride</td>
<td>7.55 × 10^-4</td>
<td>443.43 ± 18.58</td>
<td>31.90</td>
</tr>
<tr>
<td>Metformin hydrochloride</td>
<td>7.55 × 10^-5</td>
<td>479.07 ± 22.63</td>
<td>26.24</td>
</tr>
<tr>
<td>Metformin hydrochloride</td>
<td>7.55 × 10^-6</td>
<td>484.33 ± 20.93</td>
<td>25.41</td>
</tr>
<tr>
<td>Metformin hydrochloride</td>
<td>7.55 × 10^-7</td>
<td>536.34 ± 47.33</td>
<td>17.16</td>
</tr>
<tr>
<td>Metformin hydrochloride</td>
<td>7.55 × 10^-8</td>
<td>753.14 ± 32.67</td>
<td>17.22</td>
</tr>
</tbody>
</table>

* Glucose uptake (% of control) = (A–B)/(A–C) × 100. A, control; B, sample; C, blank.

Table 3. Effect of test samples on glucose consumption in BALB/c 3T3 (n = 8)

<table>
<thead>
<tr>
<th>Serial number of sample</th>
<th>Materia</th>
<th>Extract</th>
<th>IC50 (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DF007</td>
<td>Alpinia oxypilla Miq.</td>
<td>Ether</td>
<td>84.48</td>
</tr>
<tr>
<td>DF052</td>
<td>Croton tiglium L</td>
<td>Ether</td>
<td>53.72</td>
</tr>
<tr>
<td>DF167</td>
<td>Angelica sinensis Diels.</td>
<td>Ethanol</td>
<td>36.60</td>
</tr>
<tr>
<td>DF262</td>
<td>Fructus trichosanthis</td>
<td>Ethanol</td>
<td>58.50</td>
</tr>
<tr>
<td>DF432</td>
<td>Polygonatum cyrtomonem</td>
<td>Ethanol</td>
<td>13.12</td>
</tr>
</tbody>
</table>

concentration-dependent manner. At a concentration of 7.55 × 10^-7 M, metformin hydrochloride accelerated consumption at a rate of about 25.41% (Table 2).

3.5. Effect of test samples on glucose consumption in the BALB/c 3T3 cell line

There were more than 2,000 samples for screening using the model. DF007, DF052, DF167, DF262, and DF432 were identified as significantly accelerating glucose consumption and warranting further investigation. These samples exhibited an IC50 at 84.48, 53.72, 36.60, 58.50, and 13.12 mg/L (Table 3). These samples were extracted from TCM. DF007 and DF052 were petroleum ether extracts from Alpinia Oxypilla and Croton Tiglium, respectively. DF167, DF262, and DF432 were EtOH extracts from Angelica Sinensis Diels, Fructus Trichosanthis, and Polygonatum, respectively.

4. Discussion

Type II diabetes accounts for the vast majority of cases of diabetes (4). Discovery of oral insulin-mimetic agents has been a long-standing goal of pharmaceutical research. The target cells of insulin include fat cells, hepatic cells, muscle cells, and fibrosis cells. Several reports showed that 3T3-L1 (a prefat cell) provided a cell model to study the mechanism of insulin resistance or effects of anti-hyperglycemic agents (5,6). In the current study, the four cell lines of BALB/c 3T3 (a fibrosis cell line), HepG2 (a hepatic cell line), Bel7402 (a hepatic cell line), and NIH3T3 (a fibrosis cell line) were used to develop a high-throughput screening model by metabolic assay. BALB/c 3T3 is a fibroblast cell line that has been used to quantify insulin-like growth factor (IGF) bioactivity with stimulation of cell proliferation and glucose consumption (7). HepG2 is a hepatic embryo tumor cell line and has the same morphology and function of hepatic cells (8). Bel7402 was from a human hepatic tumor. The current study found that NIH3T3 was not sensitive to insulin, and glucose concentration in remaining medium tended to decrease for HepG2 and Bel7402. NIH3T3 was not sensitive to insulin because it had no endogenous insulin receptors. However, the results did indicate that BALB/c 3T3 had a high level of sensitivity to insulin, making it the best candidate cell line for use in the screening model. MTT assay revealed that insulin (31.25 nM) did not cause a change in the number of BALB/c 3T3 cells after 24 h of culturing. Results demonstrated that the effect of cell proliferation on glucose consumption was minimized by incubating BALB/c 3T3 cells with insulin or samples for 24 h.

Results showed that in BALB/c 3T3 cells metformin hydrochloride reduced levels of glucose remaining in medium. This suggests that the cell-based assay is appropriate and consistent. TCMS have historically been a prolific source of therapeutically useful drugs. Results also identified five active samples that were petroleum ether extracts or EtOH extracts from TCMS; the glucose consumption of these samples was evaluated using high-throughput screening. In order to identify leading compounds, these samples must be further separated and purified and subjected to structure-activity analysis and structural modification.

Of course, active samples identified by this model may have many potential effects, such as activating insulin and insulin growth factor (IGF) receptors, stimulating Glu4 transporter, or activating tyrosine kinase (IRTK) activity. In order to identify the mechanism at work, positive samples should be tested for activation of insulin receptor signaling. Phosphorylation of insulin receptor substrate-1 could be tested by using SDS-PAGE and Western blotting analysis. If they activate IRS-1 phosphorylation, the samples may be insulin-mimetic agents.

The indicator used by the cell-based assay was glucose consumption. Traditional methods of detecting glucose metabolism included measuring glucose absorbance or detecting hepatic products and fatty acids. These assays require radiolabeled metabolites. In the current study, however, glucose consumption was assayed colorimetrically with no need for radioisotopes. In conclusion, this cell-based assay is simple, inexpensive, and suitable for screening of insulin-like hypoglycemic drugs.
Acknowledgments

This work was supported by the International Science and Technology Cooperation Project (Project No. 2006DFA31420).

References

(Received June 16, 2008; Revised July 29, 2008; Accepted August 1, 2008)
Inhibition of in vivo angiogenesis by Anacardium occidentale L. involves repression of the cytokine VEGF gene expression

Sheela M. Lingaraju, Kaveri Keshavaiah, Bharathi P. Salimath*

Department of Studies in Applied Botany and Biotechnology, University of Mysore, Manasagangotri, Mysore, India.

*Correspondence to: Dr. Bharathi P. Salimath,
Department of Applied Botany and Biotechnology,
University of Mysore, Manasagangotri, Mysore-570006,
India; e-mail: salimathuom@rediffmail.com

ABSTRACT: Lethal tumor growth and progression cannot occur without angiogenesis, which facilitates cancer cell proliferation, survival, and dissemination. Among the many growth factors and cytokines engaged in angiogenesis, the cytokine vascular endothelial growth factor (VEGF) is regarded as the most potent and specific. Angiogenesis inhibitors are recognized as potentially useful agents for treating angiogenesis-associated diseases and VEGF represents a promising and well-studied target for antiangiogenic agents. In this study, we have tested the crude ethanolic extract of the leaves of Anacardium occidentale Linn, on Ehrlich ascites tumor cells (EAT) in vivo and in vitro. Anacardium occidentale extract (AOE) was able to suppress VEGF-induced angiogenesis in vivo in the chorioallantoic membrane, rat cornea, and tumor-induced angiogenesis in the peritoneum of EAT-bearing mice. The extract inhibited cell proliferation of different tumor cells such as EAT, BeWo, and MCF-7 in vitro in a dose-dependent manner and it reduced the VEGF level in the ascites of treated mice. A decrease in the microvessel density count and CD31 antigen staining of treated mice peritoneum provide further evidence of its antiangiogenic activity. Our results from Northern blot analysis and ELISA demonstrate that AOE can downregulate endogenous VEGF gene expression at the mRNA and protein level. Furthermore, results of our gene analysis of VEGF-promoter luciferase reporter indicated that this effect is mediated by transcriptional repression of VEGF promoter activity in EAT cells treated with AOE. Taken together, the data suggest that the VEGF system of angiogenesis is the molecular target for the antiangiogenic action of AOE.

Keywords: Angiogenesis, Ehrlich ascites tumor cells, VEGF, Anacardium occidentale

1. Introduction

Tumor angiogenesis is a critical component of tumor growth and metastasis, and the targeting of the vascular supply of tumors is an intense field of interest, with many promising preclinical trials highlighting the potential effectiveness of this form of therapy (1). Increased vascularity may allow not only an increase in tumor growth but also greater enhancement of hematogenous tumor embolization. Thus, inhibiting tumor angiogenesis may halt tumor growth and decrease the metastatic potential of tumors. Generated from a variety of tumors, the cytokine vascular endothelial growth factor (VEGF) is the most important angiogenic factor associated closely with induction and maintenance of the neovasculature in tumors (2), so the inhibition of VEGF expression by tumor cells is known to have an impact on angiogenesis-dependent tumor growth and metastasis.

A balance between angiogenic and anti-angiogenic factors has given rise to a significant interest in the use of exogenous anti-angiogenic agents for the treatment of solid tumors, and research has demonstrated that anti angiogenic treatment retards tumor growth (3). Although new chemotherapeutic drugs of both synthetic and natural origin are occasionally discovered, there is no satisfactory cure for a disease like cancer. Thus, an important step is to screen antineoplastic compounds from plants either in the form of crude extract or as a component isolated from them (4). Anticancer agents from medicinal plants appear to be satisfactory for the control of diseases and prolonging the life of the patient. There has been a continuous search for compounds to use in the prevention or treatment of cancer, and especially for agents with reduced toxicity.

Oriental herbal medicine has been used since ancient times to treat malignancies. Systematic characterization of active phytochemicals in medicinal herbs and their mechanisms of action are important for providing the rationale for their efficacy and for transforming herbal practices into evidence-based medicine. Several studies have shown that extracts from a number of herbal medicines or mixtures have anticancer potential in vitro, in vivo, or both (5-8). For example, alcohol extracts of
Ganoderma lucidum can induce apoptosis in MCF-7 human breast cancer cells (6). An aqueous extract of Paecilomyces variotii can inhibit growth of Hep G2 and Hep3B hepatoma cells (8) whereas aqueous extracts of Bu-Zhong-Yi-Qi Tang (a mixture of 10 herbs) have also suppressed growth of hepatoma cells (7). The water soluble ingredients of Sho-saiko-To (a mixture of 7 herbs) inhibit proliferation of KIN-1 human hepatoma cells and KMC-1 cholangiocarcinoma cells (9). Finally, PESPES (a mixture of 8 herbs) was developed for clinical treatment of prostate cancer and has been shown to inhibit growth of colon cancer cells (10). The crude methanolic extracts obtained from Hypericum caprifoliatum and Hypericum myrianthum have shown an antiproliferative effect on HT-29 human colon carcinoma cells and H-460 non-small cell lung carcinoma (11). A crude aqueous Sutherlandia frutescens whole plant extract has been found to induce cytotoxicity in neoplastic cells (cervical carcinoma) and CHO (Chinese Hamster Ovary cells) cell lines (12). The antiangiogenic and pro-apoptotic effect of the hexane fraction of Tinospora cordifolia on Ehrlich ascites tumor (EAT) cells has also been investigated (13).

The cashew, Anacardium occidentale Linn., is a multipurpose tree that provides numerous resources and products. The bark and leaves of the tree are used medicinally and the cashew nut has international appeal and market value as a food. Clinical studies have documented this tree's action as an antiseptic, antidiabetic, antiulcerogenic, antimicrobial, antiulcerative, antibacterial, antidysenteric, and antiulcerogenic (14). The active principles are thought to be tannins, anacardic acid, and cardol. Research has shown that these chemicals curb the darkening effect of aging by inhibiting tyrosinase activity and that they are toxic to certain cancer cells. Anacardol and anacardic acid have shown some activity against Walker carcinomas. Anacardic acid isolated from the nut shell liquid of Anacardium occidentale has been shown to have antibacterial activity against Streptococcus mutans ATCC 25175 (15). The hydroethanolic extract of Anacardium occidentale leaves has been shown to have an antilucentrogenic effect (14). Semecarpus anacardium Linn. of the family Anacardiaceae has been tested for its antitumor activity against mammary carcinoma in animals (16). The mechanism of antitumor activity of Semecarpus anacardium seems to be through the suppression of hypoxic and angiogenic factors (17). Semecarpus anacardium nut oil has been shown to have an apoptotic effect on the following human tumor cell lines: acute myeloblastic leukemia (HL-60), chronic myelogenic leukemia (K-562), breast adenocarcinoma (MCF-7), and cervical epithelial carcinoma (HeLa) (18). The current study attempts to identify whether the leaf extract of Anacardium occidentale L. inhibits tumor growth in vivo. This is the first report of the antiproliferative effect of Anacardium occidentale L. extract (AOE) on different tumor cell lines in vitro and the antiangiogenic effect of AOE in vivo through propagation of ascetic transplantable tumors like EAT that grow as cell suspensions in the intraperitoneal cavity of mice.

2. Materials and Methods

Swiss albino mice (6-8 weeks old) were obtained from the animal house, Department of Zoology, University of Mysore, Mysore, India. EAT (mouse mammary carcinoma) cells are maintained in our laboratory and are routinely used for in vivo transplantation. BeWo (Choriocarcinoma), MCF-7 (Breast cancer) and HEK 293 (Human embryonic kidney) cell lines were from the National Center for Cell Science, Pune, India. [3H]thymidine and α-[32P]ATP were from the Baba Atomic Research Center, Mumbai, India. DMEM, FBS and penicillin-streptomycin were from Invitrogen, USA. DMEM/Ham's nutrient mixture F-12 and poly-2-hydroxyl ethylmethacrylate were from Sigma Aldrich, USA. Fertilized eggs were from a government poultry farm in Bangalore, India. Anti-CD31 antibody was from Santa Cruz Biotechnology, CA, USA. A mammalian transfection kit and β-gactosidase assay kits were from Stratagene, USA. A luciferase reporter assay kit was from BD Bioscience, USA. An RNase kit was procured from Qiagen, USA. All other reagents were of the highest analytical grade.

2.1. Plant material

The leaves of Anacardium occidentale L were collected from the campus of the University of Mysore, Manasagangotri, Mysore, Karnataka, India, in April 2007 and identified by a taxonomist. Identification was confirmed by depositing the voucher specimens in the Herbarium of the Department of Botany, University of Mysore, Mysore (voucher specimen number: UOM.BOT.0133) and by comparing them with available voucher specimens. The leaves were dried in the shade and powdered. The dried leaf material (1 g) was extracted exhaustively with 100 mL of 50% ethanol at room temperature for a period of seven days. Ethanol removal was done by evaporation in order to obtain crude ethanolic AOE of the leaves at a concentration of 1 mg/0.05 mL. The sample was further diluted in saline to obtain the required concentrations for each assay.

2.2. In vitro culture of EAT, BeWo, MCF-7, and HEK 293 cells

EAT, MCF-7, and HEK 293 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 100 units/mL penicillin and 100 μg/mL streptomycin. BeWo cells were cultured in DMEM/Ham's nutrient mixture F-12 medium with 10% FBS, 100 units/mL penicillin,
2.3. Tumor and normal cell proliferation assay

A proliferation assay was carried out as described previously (19) in tumor and normal cells. To verify the in vitro effect of AOE on proliferation of EAT, BeWo, MCF-7, and HEK 293 cells, 50,000 cells/well were seeded in 12-well plates in their respective media and grown in 5% CO₂ at 37°C for 2 days. The sample was filter sterilized and diluted with cell culture medium (1 μg/μL). On the 3rd day, [³²P]thymidine (1 μCi/mL medium) was added and AOE was tested at the concentrations of 0.0, 1.0, 5.0, 10.0, and 50 μg/mL. After 48 h, the cells were trypsinized and washed with phosphate buffered saline (PBS); high molecular weight DNA was precipitated using 10% ice-cold trichloroacetic acid. Scintillation fluid (5 mL) was added to all of the samples and radioactivity was determined with a liquid scintillation counter. Each concentration of AOE was then plotted against the percentage cell survival. A dose-response curve was thus generated and the IC₅₀, i.e., the concentration of the extract required to inhibit cell growth by 50%, was determined.

2.4. In vivo angiogenesis assays

2.4.1. Chorioallantoic membrane (CAM) assay

Chorioallantoic membrane (CAM) assay was carried out in accordance with the method described previously (20). In brief, fertilized eggs were incubated at 37°C in a humidified and sterile atmosphere for 10 days. Under aseptic conditions, a window was made on the eggshell to check for proper development of the embryo. The window was resealed and the embryo was allowed to develop further. On the 12th day, saline, recombinant cytokine VEGF (50 ng per egg) or AOE (100 μg per egg) was air dried on sterile glass cover slips. The window was reopened and the cover slip was inverted over the CAM. The window was closed again, and the eggs were returned to the incubator for another 2 days. The windows were opened on the 14th day and inspected for changes in the vascular density in the area under the coverslip and photographed at 40 × magnification.

2.4.2. Corneal micropocket assay/Rat cornea assay

A corneal micropocket assay was performed in accordance with the method described previously (21). In brief, for the pellet preparation, hydron polymer poly-2-hydroxyethylmethacrylate was dissolved in ethanol to a final concentration of 12%. An aliquot of the Hydron/EtOH solution was added to VEGF (1 μg/pellet) with or without AOE (100 μg/pellet). Aliquots of 10 μL of 12% Hydron/EtOH alone (Group 1), with cytokine VEGF (Group 2), and with VEGF and AOE (Group 3) were placed onto a teflon surface and allowed to air dry for at least 2 h. Male Wister rats weighing 300-350 gms were anesthetized with a combination of xylazine (6 mg/kg, IM) and ketamine (20 mg/kg, IM). The eyes were topically anesthetized with 0.5% proparacaine and gently propapsed and secured by clamping the upper eyelid with a non-traumatic hemostat. A corneal pocket was made by inserting a 27-gauge needle, with the pocket's base 1 mm from the limbus. A single pellet was advanced into the lamellar pocket to the limbus using corneal forceps. The rats were observed for 24-72 h for the occurrence of non-specific inflammation and localization of the pellets. On day 7, the rats were anesthetized and the corneas were photographed using a CCD camera (40 ×).

2.4.3. In vivo growth of EAT cells and peritoneal angiogenesis assay

EAT cells or mouse mammary carcinoma cells (5 × 10⁶) were injected intraperitoneally into mice and growth was recorded every day until the 12th day. These cells grow in the mice peritoneum, forming an ascites tumor with massive abdominal swelling. The animals show a dramatic increase in body weight over the growth period and animals succumb to the tumor burden 14-16 days after transplantation.

To verify whether the AOE extract inhibited tumor growth and angiogenesis mediated by EAT cells in vivo. Leaf extract 133 mg/kg body weight was injected into the peritoneum of the EAT-bearing mice every day after the 6th day of transplantation. The body weight of the mice was monitored from the 1st day till the 12th day. The animals were sacrificed on the 7th to 12th day, 2ml of saline was injected (i,p), and a small incision was made in the abdominal region to collect the tumor cells along with ascites fluid. The EAT cells and ascites fluid were harvested into a beaker and centrifuged at 3,000 rpm for 10 min. The ascites volume was measured by subtracting the volume of saline injected while harvesting the EAT cells from the total ascites volume measured. The pelleted cells were counted by trypan blue dye exclusion using a hemocytometer. The animals were dissected to observe the effect of the extract on peritoneal angiogenesis. All experiments were conducted according to the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India, India.

2.4.4. Mouse survivability assay

A mouse survival assay was performed on EAT mice treated with AOE (133 mg/kg body weight) or not every day after the 6th day of transplantation. About 20 EAT-
bearing animals were used in this study; 10 served as a control and the remaining 10 were treated with AOE. The mice were weighed every day starting after the 1st day of tumor transplantation and weighing continued for the duration of their life span. Mice were assessed for mortality twice daily, in the early morning and late afternoon. Mice were euthanized upon reaching the criteria for morbidity. Deaths occurring overnight were recorded the next morning.

2.5. Immunohistological analysis (H and E staining) for microvessel density scoring

To determine whether AOE inhibits microvessel density, the effect of the extract on the angiogenic response induced by the cytokine VEGF was verified in EAT-bearing mice. EAT-bearing mice were treated regularly with the extract after the 6th day of transplantation. On the 12th day, the animals were sacrificed and the peritoneum from treated or untreated mice was fixed in 10% formalin. Sections (5 μm) were made from paraffin embedded peritoneum and stained with hematoxylin and eosin. Microvessel counts were done using a Leitz-DIAPLAN microscope with attached CCD camera and photographs were taken at 40 × magnification.

2.6. CD31 immunostaining for proliferating endothelial cells in peritoneal blood vessels

The effect of the extract on proliferating blood vessel endothelial cells was determined by staining the paraffin sections with anti-CD31 antibody as described previously (22). Peritoneum sections were processed as per the protocol supplied by the manufacturer. In brief, sections were dewaxed in xylene, rehydrated in descending concentrations of ethanol, and washed in distilled water. Antigen retrieval was done by heating the sections at 95°C for 15 min. The sections were then treated with 3% H2O2 in PBS to block endogenous peroxidase activity. They were blocked in blocking serum for 30 min to reduce non-specific binding and were incubated with anti-CD31 antibody overnight at 4°C. Following PBS washing, slides were incubated with secondary antibody (biotinylated rabbit anti-mouse IgG) for 1 h at room temperature followed by ABC reagent for 45 min. Antigen and antibody complex was detected using a substrate (DAB, 100 μL)section for 5 min. Subsequently, the slides were counter-stained with 2% hematoxylin for 5-7 min and washed again in tap water thrice for 5 min each. The slides were washed successively for 2 min each in 50% ethanol, 80% ethanol, and absolute alcohol. After a xylene wash, the slides were mounted using Entellan mountant solution and the sections were evaluated using a DIAPLAN light microscope and photographed (40 ×).

2.7. Northern blot analysis

Total RNA was extracted from untreated EAT cells and EAT cells treated with AOE (1 mg/mL of cells) at regular time intervals starting at 0-4 h using an RNeasy kit according to the instructions from the manufacturer. Total RNA (20 μg) was separated by 1.2% agarose-formaldehyde gel electrophoresis and blotted onto a nylon membrane that was baked and hybridized with α [32P]-dATP-labeled VEGF165. The hybridized blot was processed and transferred to IP, and the image was scanned with a phosphoimage analyzer. After scanning, the blots were stripped and reprobed for expression of GAPDH as an internal control using labeled GAPDH cDNA.

2.8. VEGF-enzyme linked immunosorbent assay (VEGF-ELISA)

VEGF-ELISA was done using ascites fluid collected from treated or untreated mice as described previously (23). In brief, 100 μL of ascites sample from AOE-treated or untreated mice were coated onto 96-well microplates using a coating buffer at 4°C overnight. Wells were washed and blocked with blocking buffer (5% skimmed milk powder in PBS) for 2 h at 37°C, followed by incubation with anti-VEGF165 antibodies (1:1,000). Recombinant anti-mouse VEGF165 was used to set up the standard curve. After incubation for 2 h, the wells were washed before they were treated with 100 μL/well of goat anti-rabbit IgG conjugated to alkaline phosphatase (p-NPP). After incubation for 30 min at room temperature, the reaction was terminated by adding 0.1 N NaOH and the absorbance at 405 nm was measured with a Medispec ELISA reader.

2.9. Transient transfection and luciferase assay

To determine the effect of AOE on tumor or normal cells, EAT and HEK 293 cells were respectively transfected with 2 μg of VEGF promoter-luciferase reporter constructs containing the 5′ flanking region (~2068 bp) of the human VEGF gene promoter coupled to the promoterless luciferase reporter gene vector pCDNA3 and 2 μg of the β-galactosidase expression vector β-Gal. Transient transfection assays were performed using a calcium phosphate transfection kit according to the manufacturer’s instructions. In brief, 2 × 105 cells were seeded in 6-well plates and cultured to 60-70% confluency. The transfected cells were cultured further for 20 h followed by incubation with or without AOE (0.0, 1.0, 5.0, 10.0, and 50 μg/mL). Cells were washed once with PBS and lysed with reporter lysis buffer. Luciferase (Luc) activity of
the cell extract was determined using the luciferase assay system. β-Galactosidase (β-Gal) activity was determined by measuring hydrolysis of O-nitrophenyl β-D-galactopyranoside using 50 μL of cell extract at 37°C for 2 h. Absorbance was measured at A 405. Luciferase activity was determined using 50 μL of cell extract. The reaction was initiated by injection of 100 μL of luciferase assay substrate. Relative Luc activity (defined as VEGF reporter activity) was calculated as Luc (relative light units per 50 μL cell extract)/β-Gal activity (A 405 per 50 μL cell extract per 2 h).

2.10. Plant extraction

To further verify the chemical nature of the specific fraction, the dried plant powder of *A. occidentale* was extracted sequentially from non-polar to polar solvents, namely petroleum ether-hexane-benzene-chloroform-ethylacetate-acetone-methanol and ethanol. The solvents were evaporated with a rotary evaporator and all of the fractions (100 μg/dose) were tested for antiangiogenic activity in vivo in the EAT model.

2.11. Statistical analysis

Effects of various groups on various biological outcomes were statistically evaluated using analysis of variance and by use of a Student's t-test; levels of significance were evaluated with the *p* value. All experiments were repeated at least three times to ensure reproducibility. The results are expressed as means ± SE, with *p < 0.05* considered to be statistically significant.

3. Results

3.1. AOE inhibits in vitro proliferation of tumor cells

EAT, BeWo, MCF-7, and untransformed HEK 293 tumor cells were used to verify if AOE inhibits the proliferation of tumor or normal cells in vitro. AOE inhibited proliferation of different tumor cell lines in a dose-dependent manner. As shown in Figures 1 A, B, C and D, a maximum of 80%, 85%, 70%, and 20% inhibition of proliferation was seen in EAT, BeWo, MCF-7, and HEK-293 cells, respectively. When compared to the effect of AOE on tumor cells, little or no effect was seen with untransformed normal HEK 293 cells. The IC50 of the extracts are shown in Table 1. The IC50 of AOE on EAT, BeWo, and MCF-7 cells was at concentrations between 1-20 μg/mL. AOE had a very similar inhibitory effect on all three cell lines. The IC50 shows 50% inhibition of growth of cells at a given concentration. Here, a higher IC50 value means a less toxic extract. The IC50 of AOE on HEK-293 cells was significantly greater than that on other cell lines, indicating that AOE was less toxic to normal cells than to cancer cell lines.

![Figure 1](https://www.ddtjournal.com)

Figure 1. Effect of AOE on proliferation of normal and tumor cell lines. EAT (A), BeWo (B), MCF-7 (C), and HEK-293 cells (D); cells (50,000/well) were treated with AOE or left untreated in the presence of [3H] thymidine (1 μCi/mL). After 48 h of incubation, the incorporated [3H] thymidine into the cells was quantified by scintillation counting. All data are presented as the mean from three different experiments with triplicates and means of ± S.E.M.

Table 1. Antiproliferative activity (IC50 value, μg/mL) of the crude ethanolic extract of *Anacardium occidentale* L.

<table>
<thead>
<tr>
<th>Sample</th>
<th>EAT</th>
<th>BeWo</th>
<th>MCF-7</th>
<th>HEK-293</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOE</td>
<td>8.11469</td>
<td>5.54608</td>
<td>15.85254</td>
<td>597.36224</td>
</tr>
</tbody>
</table>

3.2. Angioinhibitory effect of AOE

The CAM assay and rat cornea assay are commonly used for in vivo validation of the angioinhibitory activity of antiangiogenic molecules. Results shown in Figures 2A and B indicate that AOE has a direct effect on inhibition of angiogenesis in an in vivo model system. When compared to the extensive angiogenesis seen in VEGF-treated CAM and rat cornea, angiogenesis at the site of the application of AOE was significantly reduced.

3.3. In vivo treatment of AOE inhibits growth of EAT cells and extends the survival period

The result in Figure 3A indicates that control EAT-bearing mice had a gradual increase in body weight of about 8-10 gms when 5 × 106 cells were injected on day zero. When compared to the body weight of control EAT-bearing mice on day 12, the body weight of the treated mice decreased significantly by about 50%, indicating the effect of the extract in preventing the growth of tumor cells. In a fully grown ascites tumor, a volume of 8-9 mL of ascites is usually generated during the tumor growth period of 12 days. In AOE-treated mice, the volume of ascites was about 1-2 mL (Figure 3B). The number of viable cells in full-grown EAT-bearing mice is about 48 × 10⁷/mouse while this number was reduced in AOE-
treated mice to 6×10^6/mouse (Figure 3C), indicating an 8-fold reduction when compared to the control. These results indicate the antitumor activity of AOE. In a fully grown ascites tumor \textit{in vivo}, there is extensive peritoneal angiogenesis, as shown in Figure 3D. In AOE-treated mice, a significant decrease in peritoneal angiogenesis was observed \textit{in vivo}.

Further, the effect of AOE on survivality of EAT-bearing animals was tested. Upon intraperitoneal transplantation of 5×10^6 cells/mice, the EAT-bearing mice survived for 15 days, with tumor cells increasing in number to 15×10^9 cells/mice. The animals succumbed to the tumor burden 15 days after tumor transplantation. AOE treatment (133 mg/kg body weight/dose, every day for 10 doses) extends the survival time of EAT-bearing mice from 15 days up to two months (data not shown).

3.4. H & E and CD31 immunostaining

Histological examination of the peritoneal sections of both groups revealed a relative reduction in the number of newly formed microvessels in the AOE-treated peritoneum compared to the control (Figure 4A). CD31 is used as a marker to indicate the proliferation of endothelial cells. The current results of CD31 staining indicate that there is a reduction in the number of proliferating endothelial cells in the peritoneum of AOE-treated EAT-bearing mice (Figure 4B), corroborating the results shown in the inhibition of peritoneal angiogenesis \textit{in vivo}.

3.5. Inhibition of VEGF mRNA levels by AOE

In order to investigate the effect of AOE on the VEGF gene, levels of mRNA synthesis were determined in untreated EAT cells or EAT cells treated with AOE and incubated for 30 min to 4 h. As shown in Figure 5, VEGF mRNA levels decreased considerably over a period of 4 h in AOE-treated EAT cells as compared to untreated cells. The decrease in VEGF gene expression was corroborated by the reduction in the amount of VEGF protein as estimated by VEGF-ELISA in the ascites of EAT cells treated with AOE.

3.6. AOE inhibits VEGF production in EAT cells

In control EAT-bearing mice, over the 0-12 day tumor growth period quantification of VEGF in the ascites secreted by the growing tumor indicated that there is a gradual production and secretion of VEGF by EAT cells. These results indicate that 1,716 ng of VEGF is present in the ascites of a fully grown tumor whereas 49 ng of
VEGF per mouse was detected in AOE-treated mice, suggesting the inhibition of VEGF secretion (Figure 6).

3.7. Down regulation of VEGF gene expression by AOE

To determine whether AOE modulates VEGF gene expression, the effect of AOE on VEGF promoter luciferase reporter gene analysis was tested. When compared to normal untransformed HEK 293 cells, the activity of VEGF gene expression was 50-60% higher in EAT cells than in normal cells. A dose-dependent inhibition of VEGF gene expression was seen with increasing concentrations of AOE, with a maximum of 80% inhibition with 50 μg/mL of AOE in EAT cells (Figure 7), while a maximum of 25% inhibition of VEGF gene expression was seen in HEK 293 cells.

3.8. Fractionation and identification of the specific antiangiogenic fraction of A. occidentale

The dried leaf powder of A. occidentale was fractionated and identified as containing the specific antiangiogenic fraction.
sequentially extracted with petroleum ether, hexane, benzene, chloroform, ethyl acetate, acetone, methanol, and ethanol, and all of the extracts were tested for their angioinhibitory effect using the EAT model. Results indicated a decrease in the body weight, ascites volume, cell number, and neovascularization in the peritoneum of EAT-bearing mice treated with an ethanolic fraction of *A. occidentale* (Table 2).

Figure 4. AOE inhibits MVD and proliferation of endothelial cells in mouse peritoneum. A) The peritoneums of control (1) as well as AOE-treated (2) EAT-bearing mice were embedded in paraffin and 5 μm sections were made using a microtome. The sections were stained with haematoxylin and eosin and observed for microvessel density (40 ×). Arrows indicate the microvessels. B) Paraffin sections (5 μm) of peritoneum of control (1) and AOE (2) mice were immunostained with anti-CD31 (PECAM) antibodies. Arrows indicate the stained activated endothelial cells.

Figure 5. Effect of AOE on expression of mRNA in EAT cells. Total RNA from untreated EAT cells or EAT cells treated with AOE was isolated for varying time periods (Lane 1: Control, Lanes 2-5: 30 min – 4 h) and Northern blot analysis was performed using a VEGF165 cDNA probe. GAPDH was used as an internal control. The experiment was performed three times.

Figure 6. Effect of AOE on VEGF levels in ascites fluid *in vivo*. EAT-bearing mice were injected with AOE (133 mg/kg body weight) for four doses or left untreated, and ascites fluid was collected every day after each dose of treatment. ELISA was carried out after sacrificing the animal to quantify the VEGF in ascites fluid using anti-VEGF165 antibodies. Strong inhibition of VEGF expression in AOE-treated mice is evident.

Figure 7. Effect of AOE on VEGF promoter activity. EAT and HEK 293 cells were transiently transfected with 2 μg of pLuc 2068. Forty eight hours later, cells were assayed for luciferase activity. AOE extract repressed VEGF promoter activity in a dose-dependent manner in EAT cells.
of microvessels was almost doubled in tumors from patients with metastasis (29). Further, the role of AOE with regard to the regulation of VEGF expression was investigated at the mRNA, protein, and gene level. This finding is in agreement with the effect AOE has at repressing endogenous VEGF expression, where VEGF is downregulated on an mRNA as well as on a protein level in a time-dependent manner. Moreover, transient transfection assays revealed that AOE downregulated VEGF promoter activity in EAT cells in a dose-dependent manner. This result suggests that transcriptional repression of the VEGF gene represents the mechanism by which AOE downregulates VEGF expression. As in normal angiogenesis, tumor angiogenesis appears to rely heavily on VEGF. In addition to producing VEGF themselves, tumors may induce the production of VEGF in their surrounding tissue; therefore, high levels of VEGF production in a wide variety of tumors and tumor-associated cells suggest that VEGF plays a pivotal role in tumor angiogenesis. Thus, an antiangiogenic agent could conceivably block the paracrine action of tumor cells and hence suppress the proliferation and survival of tumor cells. Inhibition of VEGF gene expression by AOE should also be reflected by the levels of VEGF in the ascites secreted by the EAT cells. In an EAT model, mice produced about 8-9 mL of ascites fluid over a growth period of 12-14 days; this fluid contained 230 ng of VEGF/mL (30). The current results on quantification of the cytokine in the ascites of EAT-bearing mice have clearly indicated that AOE efficiently decreases the level of VEGF in an in vivo model system. A decrease in ascites formation in vivo and in VEGF levels in ascites bears significant importance in terms of a clinical correlation with inhibited ascites formation in human tumors. In conclusion, the present data indicate a possible role AOE has in preventing cancer from becoming malignant, presumably via selective curbing of neovessel formation at the tumor site. AOE may hold potential as a pharmaceutical drug and its antiangiogenic activity may contribute to its well-documented clinical activity. Although this study investigated the antiangiogenic activity of the crude ethanolic extract of A. occidentale, the leaf powder of this plant has also been fractionated using different solvents based on polarity. An ethanolic fraction

4. Discussion

Tumor growth and metastasis are dependent on the formation of new blood vessels. The most elegant investigation of the correlation between the onset of angiogenesis and tumor growth was carried out by Folkman et al. (24). The clinical usage of herbal medicine could have an impact on therapy for cancer. The present study was the first to provide direct evidence that an ethanolic extract of Anacardium occidentale L. has potent antiangiogenic activity in vitro and in vivo, corroborating the tumor-preventing action of AOE. The current authors have already reported the effect of a methanolic fraction of Glycyrrhiza glabra on EAT cells in screening for antiangiogenic medicinal plants (25). Given that angiogenesis is essential for tumor growth, the antitumor effects of AOE may correlate with its antiangiogenic activity. The antiangiogenic activities of AOE in vivo may be explained by its inhibitory action on proliferation of tumor cells in vitro in a dose-dependent manner as compared to the little effect, if at all, it has on the untransformed normal cell line. The IC_{50} of AOE on tumor cell lines was between concentrations of 1-20 μg/mL while it was significantly greater in normal cells. The lower the IC_{50} value, the more potent the extract is as an inhibitor of tumor cell growth. The current results show that there is inhibition of neovascularization by AOE in the CAM and rat cornea. Inhibition of fluid accumulation, tumor growth, and microvessel density by neutralization of VEGF has been demonstrated, underlining the importance of VEGF in malignant ascites formation (26-28). Since there is inhibition of neovascularization by AOE, this supports the view that AOE may repress the expression of VEGF-like factors or inhibit the secretion of such factors, thereby inhibiting the accumulation of ascites fluid and formation of new blood vessels. Further evidence for the antiangiogenic potential of AOE comes from the current results on inhibition of the extent of proliferating endothelial cells in the peritoneal lining of tumor-bearing mice. A significant decrease in peritoneal angiogenesis and levels of stained PECAM in sections of peritoneal wall confirm the antiangiogenic activity of AOE. Research has demonstrated that the density of microvessels was almost doubled in tumors from

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Body weight</th>
<th>Ascites volume</th>
<th>Cell number</th>
<th>Peritoneal angiogenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petroleum ether</td>
<td>32.6 g</td>
<td>40.1 g</td>
<td>5.0 ml</td>
<td>7.2 × 10^8/mouse</td>
</tr>
<tr>
<td>Hexane</td>
<td>33.0 g</td>
<td>40.6 g</td>
<td>5.2 ml</td>
<td>8.4 × 10^8/mouse</td>
</tr>
<tr>
<td>Benzene</td>
<td>31.9 g</td>
<td>41.3 g</td>
<td>5.5 ml</td>
<td>8.8 × 10^5/mouse</td>
</tr>
<tr>
<td>Chloroform</td>
<td>32.0 g</td>
<td>42.8 g</td>
<td>7.5 ml</td>
<td>8.8 × 10^5/mouse</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>33.2 g</td>
<td>39.6 g</td>
<td>5.0 ml</td>
<td>8.8 × 10^5/mouse</td>
</tr>
<tr>
<td>Acetone</td>
<td>33.8 g</td>
<td>40.3 g</td>
<td>5.0 ml</td>
<td>6.8 × 10^5/mouse</td>
</tr>
<tr>
<td>Methanol</td>
<td>33.4 g</td>
<td>43.0 g</td>
<td>7.5 ml</td>
<td>8.96 × 10^5/mouse</td>
</tr>
<tr>
<td>Ethyl acetate</td>
<td>33.2 g</td>
<td>39.6 g</td>
<td>5.0 ml</td>
<td>8.8 × 10^5/mouse</td>
</tr>
<tr>
<td>Chloroform</td>
<td>32.0 g</td>
<td>42.8 g</td>
<td>7.5 ml</td>
<td>8.8 × 10^5/mouse</td>
</tr>
<tr>
<td>Hexane</td>
<td>33.0 g</td>
<td>40.6 g</td>
<td>5.2 ml</td>
<td>8.4 × 10^8/mouse</td>
</tr>
<tr>
<td>Tumor bearing</td>
<td>32.6 g</td>
<td>43.6 g</td>
<td>7.0 ml</td>
<td>14 × 10^8/mouse</td>
</tr>
</tbody>
</table>

Table 2. Effect of different solvent fractions of Anacardium occidentale leaves on EAT growth in vivo
produced a drastic decrease in body weight, ascites volume, cell number, and peritoneal angiogenesis on the 12th day of tumor transplantation as compared to untreated control EAT mice and EAT-bearing mice treated with other solvent fractions. Together, these data confirm that the ethanolic fraction had the maximum antiangiogenic activity. Further purification and characterization of this active compound is in progress.

Acknowledgements

The authors appreciate the financial support of the Department of Science and Technology, Women Scientists Scheme A (DST WOS-A) (No. SR/WOS-A/LS-177/2006), University Grants Commission, New Delhi and the Board of Research in Nuclear Sciences, Department of Atomic Energy, Mumbai, India. The authors wish to thank Dr. H.N. Yajurvedi of the Animal facility, Department of Zoology, University of Mysore, Mysore, India, for the timely supply of animals for these experiments.

References

(Received June 25, 2008; Revised August 20, 2008; Accepted August 23, 2008)
Production of a human antibody fragment against the insulin-like growth factor I receptor as a fusion protein

Yu Kusada¹, Toru Morizono¹, Keiko Sakai²,³, Atsushi Takayanagi³,⁴, Nobuyoshi Shimizu⁴, Yoko Fujita-Yamaguchi¹,²,³,*

¹ Department of Applied Biochemistry, Tokai University School of Engineering, Kanagawa, Japan; ¹² Institute of Glycotechnology, Tokai University, Kanagawa, Japan; ³ Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Japan; ⁴ Department of Molecular Biology, Keio University School of Medicine, Tokyo, Japan.

*Correspondence to: Dr. Yoko Fujita-Yamaguchi, 1117 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan; e-mail: yamaguch@keyaki.cc.u-tokai.ac.jp

ABSTRACT: The aim of this study was to isolate single-chain variable fragments (scFvs) against human insulin-like growth factor I receptor (IGF-IR) from a phage library displaying human scFvs. Isolated scFvs-displaying phages showed affinity for IGF-IR in comparison to the control. Expression of scFv proteins in Escherichia coli for further characterization, however, proved extremely difficult. Alternatively, the scFv protein was expressed as a fusion protein with a maltose-binding protein (MBP) that is a highly soluble E. coli protein. The MBP-scFv fusion protein expressed in a soluble form in E. coli was purified to homogeneity by two-step affinity chromatography. The resulting MBP-scFv exhibited affinity for IGF-IR and structurally-related insulin receptor (IR). These results suggest both that MBP-scFv fusion proteins are practical alternatives to isolating scFv proteins for further characterization and that successful isolation of human scFVs against a specific protein of interest requires vigorous screening in the early stages. Such screening is accomplished by using two independent screening methods such as measuring binding to IGF-IR but not to IR by ELISA or measuring competitive binding by IGF-I in addition to binding to IGF-IR alone.

Keywords: Therapeutic antibody, Single-chain antibody, Insulin-like growth factor I receptor, Phage display, Maltose-binding protein fusion

1. Introduction

Insulin-like growth factor I receptor (IGF-IR) plays an essential role in cancer growth, progression, and metastasis (1-3). IGF-IR is overexpressed in a variety of malignant tumors and also plays a role in hormone-independent growth of breast and prostate cancers (4,5). IGF-IR is therefore considered to be a good target molecule for cancer therapy. Several anti-cancer strategies have been developed such as anti-sense RNA (6), tyrosine kinase inhibitors (7), and mAbs (8), but anti-IGF-IR mAbs are probably the best anti-tumor therapeutics for several reasons. First, the antibodies bound to the receptor result in inhibition of ligand-induced phosphorylation of β subunits followed by silencing of down-stream signal molecules. Secondly, antibodies induce receptor clustering due to their bivalency. The antibody-receptor complex is then internalized into endosomes and then to lysosomes, where the receptors are thought to degrade. This process, down-regulation of IGF-IR, was first demonstrated in breast cancer cells (9,10) and is responsible for causing the refractoriness of cancer cells to IGF-I stimulation and inducing apoptosis. Thirdly, IGF-IR antibodies can recruit effector functions, including ADCC through FcγR and complement fixation (11).

Several approaches to producing therapeutic antibodies are now available, that is, CDR grafting from the mouse variable region to a human frame (12), immunizing transgenic mice carrying human antibody gene loci (13), and screening of phage display libraries in vitro (14). Of these approaches, the phage display screening method is a powerful tool for producing scFv or Fab fragments in vitro in a short period of time. The major drawback associated with this method is, however, difficulty in readily producing soluble scFv proteins in E. coli transfected with original phages. For example, previous studies reported aggregations of scFvs in the periplasmic space of E. coli (15,16). Several methods of improving solubility have been evaluated such as use of different E. coli strains.
(17), changes in the vector construction (18), and introduction of a new tag (19).

The current authors previously reported that 1H7 scFv-Fc consisting of scFv derived from anti-IGF-IR mAb 1H7 and a human IgG1 Fc domain had an inhibitory effect on tumor growth in vivo (9,10). In an attempt to obtain more effective as well as humanized anti-IGF-IR Abs, a phage library displaying human scFvs was screened in this study using a human recombinant IGF-IR extracellular domain as an antigen. Since difficulties in expressing scFv proteins from phage-infected E. coli were encountered as anticipated, a scFv gene was fused to the gene for maltose-binding protein (MBP) in order to produce scFv proteins of interest in a soluble form (20). MBP-scFv expressed was purified by two-step affinity chromatography and was shown to bind to the antigen in a dose-dependent manner. Therefore, MBP fusion protein can be used to characterize scFv in in vivo experiments. The purified MBP-scFv protein was also found to bind to the insulin receptor, which indicated the presence of common epitopes for isolated scFvs.

2. Materials and Methods

2.1. Materials

E. coli strains used were the suppressor strain TG1, and the nonsuppressor strain TOP10F’ from Invitrogen (CA, USA). E. coli JM109 was the suppressor strain from Takara Bio (Shiga, Japan). E. coli XL1-Blue was the suppressor strain from STRATAGENE (CA, USA). Recombinant human extracellular IGF-IR (rhIGF-IR) and IR (rhIR) were purchased from R&D Systems Inc. (MN, USA). Helper phage M13KO7, HRP/anti-M13 conjugate, HRP/anti-E tag conjugate, and His MicroSpin Purification Module were from GE Healthcare Bio-Sciences Corp. (NJ, USA). The plasmid vector pMAL-p2E that encodes MBP, anti-MBP mAb, and Amylose Resin High Flow were purchased from New England Biolabs (MA USA). All DNA primers used in this study were designed accordingly and ordered from Nihon Gene Research Laboratories, Inc. (Sendai, Japan). A control phage named 1H7 displaying mouse scFv specific for IGF-IR was constructed as previously described (21).

2.2. Selection of IGFIR-binders from a phage library-displaying human scFvs by panning

A phage library representing over \(10^{12}\) independent clones that displayed human scFvs was constructed and used to screen anti-IGF-IR scFvs as previously described (22). Phage clone selection was basically carried out according to previously published procedures with some modifications (22,23). For the first panning, 24 wells of a 96-well plate were coated with rhIGF-IR 50 ng/50 μL in 20 mM Tris-HCl buffer, pH 7.4, containing 0.15 M NaCl (TBS) and incubated at 4°C overnight. The wells coated with rhIGF-IR were blocked by incubation with 150 μL of 3% bovine serum albumin (BSA) in TBS at room temperature (RT) for 2 h. After removal of blocking solution, the phage library was added to the wells and incubated at RT for 2 h. Unbound phages were washed away by incubation with TBS containing 0.2% Tween 20 (TBST) and TBS. For elution, 100 mM triethyl amine (TEA) solution was added to each well and the plate was incubated at RT for 10 min. TEA solution containing eluted phages was neutralized by adding 0.7 M Tris-HCl buffer, pH 7.4, containing 1.5% BSA solution. This elution step was repeated. E. coli TG1 cells were added to collected phage solutions and incubated at 37°C for 1 h to allow phages to infect TG1 cells. Infected TG1 cells were spread out on LB (1% tryptone, 0.5% yeast extract, 1% NaCl, and 1 mM NaOH) supplemented with 2% glucose and 50 μg/mL carbenicillin (LBGC) in plates and allowed to grow at 25°C for 2 d until independent colonies formed. All resulting colonies were pooled and stored in SBS medium (3% tryptone, 2% yeast extract, 0.5% NaCl, and 20 mM Tris-HCl buffer, pH 7) supplemented with 16% glycerol at -80°C. For the second round of panning, this phage-infected E. coli stock was used to enrich IGF-IR reactive scFvs. Five hundred μL of this stock were added to SBS supplemented with 50 μg/mL of carbenicillin (SBSC) and cultured at 37°C for 2 h followed by infection with 8.8 × 10^6 pfu of M13KO7 helper phage by culturing at 37°C for 1 h. To select double-infected and scFv-producing E. coli, 100 μg/mL chloramphenicol and 50 μg/mL kanamycin were added to the E. coli solution followed by culturing at 25°C for 2 d. The resulting phage preparation was precipitated in 4% polyethylene glycol/0.5 M NaCl (PEG precipitation) and resuspended in TBS containing 1.5% BSA and 0.2% Tween 20 followed by treatment with Benzozazole (Novagen) to digest any unnecessary DNA. The prepared phages were subjected to the second round of panning following the above procedure with some modifications. For the second to fourth round of panning, a longer elution time and fewer antigen-coated wells were used as the panning process advanced. Furthermore, E. coli cells infected with phages eluted after the second and third rounds of panning were directly added to SBSC medium and then subjected to the helper phage-rescuing procedure as described above.

2.3. Screening for phages displaying human scFvs against IGF-IR

After four rounds of panning, the concentrated phages were subjected to dilution and infection to logarithmically growing E. coli XL1-Blue strain.
Infected cells were plated on LBGC agar plates and incubated at 25°C for 2 d. Each colony was picked up and cultured in 150 μL of SBSC supplemented with 2% glucose in 96-round well plates. After infection with helper phage, phage clones were obtained by adding 100 μg/mL chloramphenicol and 50 μg/mL kanamycin and culturing at 25°C for 2 d, followed by centrifugation at 1500 g for 10 min. Fifty μL of each supernatant were collected and mixed with 100 μL of 3% BSA in TBS. These supernatants containing phages were used for ELISA.

2.4. Screening phage clones for scFv inserts by PCR and DNA sequencing

scFv gene inserts were amplified from respective XL1-Blue colonies infected with individual phages by PCR with a primer set (Forward Cm-f: 5’-TGTGATGGCT TCCATGTCGGCAGAATGCT-3’; Reverse g3-r: 5’-GCTAAAACACTTCCAACAGTCTATGCGGCAC-3’) in 30 μL of reaction mixture. After preheating at 94°C for 2 min, PCR was carried out with 35 cycles under conditions of denaturing at 94°C for 20 sec, annealing at 53°C for 20 sec, and extension at 68°C for 1 min. After purification and confirmation on 1% agarose gel electrophoresis, the resulting scFv genes were subjected to DNA sequencing. DNA sequences of scFvs were determined using a 3730 DNA Analyzer (Applied Biosystem, Foster City, CA).

2.5. Expression of human scFvs

E. coli TOP10F' -FS, non-suppressor strain, harboring a chaperone/repressor vector carrying a spectinomycin resistance gene, as was produced by Takayanagi et al. (manuscript in preparation) was infected with phages, followed by selection on LBGC agar plates in the presence of 50 μg/mL of spectinomycin (LBGCS). Once colonies were confirmed to have the scFv gene by colony PCR, E. coli cells were cultured overnight in 5 mL of 2 × YT medium containing 50 μg/mL carbenicillin, 50 μg/mL spectinomycin (2 × YTCS), and 1% glucose at 25°C. The solution cultured overnight was then cultured in 40 mL of freshly-prepared 2 × YTCS for 1 h at 30°C, followed by induction with 1 mM IPTG at 30°C for 5 h. Periplasm fractions collected as described above were analyzed by ELISA.

2.6. Construction, expression, and purification of a MBP-scFv fusion protein (MBP-scFv)

Phagemids were prepared from phage-infected E. coli with a Miniprep Kit (Sigma) and used as templates for genetic application. Construction, expression, purification, and analysis of MBP-scFv were basically carried out according to previously published procedures (24), except that a signal sequence was included in the current construct so that MBP-cFv would be expressed in the periplasmic space of E. coli. A candidate scFv gene, 5E4, was amplified by PCR with primers (MBP-scFv forward: 5’-TCCGG AATTCTCTAGACCATGGCCCA-3’ and MBP-scFv reverse: 5’-CCAATTGTGTTCTGCAAT TACAGTGTTGCTGTGTTGTT-3’) under the following conditions: preheating at 94°C for 2 min, 35 cycles of denaturing at 94°C for 1 min, annealing at 54°C for 1 min, and extension at 68°C for 1 min. The amplified scFv gene and pMAL-p2E vector encoding MBP were digested by restriction enzymes, EcoRI and Pst I, followed by ligation reaction with Ligation High (TOYOBO) at RT for 1 h. The ligated scFv gene/vector DNA was precipitated by ethanol and dissolved in ultra-pure water. E. coli JM109 strain was transformed with a resulting vector and cultured on LBGC plates. The resulting colonies were checked to confirm the presence of the inserted gene by colony PCR. The confirmed colonies were cultured in LBGC medium at 25°C overnight. The cultured E. coli was diluted 10-fold with LBGC medium. After culturing at 25°C for 2.5 h, 0.3 mM isopropyl-thio-β-D-galactopyranoside (IPTG) was added to the E. coli culture to induce expression of the MBP-scFv protein. Cells were collected after culturing at 20°C for 5 h, from which the periplasm fraction was prepared by means of mild osmotic shock. The periplasm extraction collected was subjected to purification by two-step affinity chromatography. Briefly, the periplasm fraction was passed through amylose resin. The eluates were further purified with a His-spin column (Ni²⁺ column). Each purification step was analyzed for the amount and content of protein by the Bradford method and SDS-PAGE (4-20%), respectively. In parallel, MBP protein was purified by amylose resin from E. coli transformed with pMAL-p2E vector itself. The binding specificities of the purified MBP-scFv and MBP proteins were analyzed by ELISA.

2.7. Evaluation of specificity by ELISA

Binding of phage antibodies or soluble MBP-scFv proteins to IGF-IR was evaluated by ELISA. Each well of a 96-well plate was coated with 500 ng/50 μL of rhIGF-IR or rhIR followed by incubation for 2 h at RT. Antigen-coated wells and control wells were blocked by incubation overnight with 150 μL of 3% BSA/TBS at 4°C. The wells were then incubated with 50 μL of phage antibodies or soluble scFv proteins at RT for 2 h. The wells were washed 3 times with 150 μL of TBST. For detection of phage antibodies, HRP/anti-M13 conjugate (1:2,500 dilution) was used as a second antibody. For detection of MBP-scFv, anti-MBP mAb (1:1,000 dilution) and HRP/anti-mouse antibody conjugate (1:1,000 dilution) were used as a second and
a third antibody, respectively. For detection of scFv proteins, HRP/anti-E-tag conjugate (1:2,000 dilution) was used as a second antibody. The wells were washed 7 times with TBST and then 3 times with TBS. Peroxidase activity was detected by reaction with 100 μL of ABTS/H$_2$O$_2$ for 30 min and termination with 1% oxalic acid. The absorbance at 415 nm was measured by a BIO-RAD plate-reader.

2.8. Characterization of phage antibodies by surface plasmon resonance (SPR)

SPR analysis was carried out at 25°C using 10 mM HEPES, pH 7.4, containing 150 mM NaCl, and 0.005% surfactant P20 (HBS-P buffer) as a running buffer. Binding properties of phage antibodies were determined using a Biacore X (Pharmacia Biosensor AB, Uppsala, Sweden). A CM3 sensor chip was equilibrated overnight with the running buffer before use. Immobilization of the antigen on the sensor chip was achieved by injecting 50 μL of 10 mM sodium acetate buffer, pH 3.8, containing 500 μg/mL of rhIGF-IR via amine groups using the Amine Coupling Kit (Pharmacia Biosensors) as previously described (25). Binding of phage antibodies displaying 2A1, 3E2, 3H5, and 4C5 scFv was analyzed at two or three different concentrations as indicated in the figure legend. M13KO7 helper phage, which does not display scFv, served as a negative control.

3. Results

3.1. Panning and screening of anti-IGF-IR human scFv-displaying phages

A phage display library consisting of more than 10^{11} independent clones was subjected to four rounds of panning against rhIGF-IR as an antigen (Figure 1). Of 419 independent clones screened by ELISA, twenty-three positive clones were found to show ELISA positivity with S/N of > 2. Typical results of ELISA are shown in Figure 2A. ScFv genes, amplified from 23 clones by PCR as indicated by the examples in Figure 2B, were subjected to DNA sequencing analyses, which revealed that 4 clones were identical. Thus, 20 independent clones were obtained as candidate phages presenting anti-IGF-IR scFvs. Amino acid sequence alignments of VH and VL of all 20 scFvs are shown in Tables 1A and B, respectively. These scFvs were clearly derived from different clones with diverse origins.

3.2. Initial characterization of phage antibodies by SPR

SPR analyses were carried out to determine whether or not phages displaying "anti-IGF-IR" scFvs have binding affinities for IGF-IR. Figures 3A, B, C, and D show sensorgrams at different concentrations of phages displaying 2A1, 3E2, 3H5, and 4C5 scFv, respectively. Although these data are merely qualitative, the resulting sensorgrams clearly indicated that the phage antibodies bound to immobilized IGF-IR in a dose-dependent manner. In addition, M13KO7 helper phage, which served as a negative control, displayed no signal (data not shown), indicating that all phage antibody affinity
Table 1A. Multiple alignment for deduced amino acid sequences of anti-IGF1R scFv Fragments

<table>
<thead>
<tr>
<th>Amino Acid Sequence</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>QVQLVESGGGTVPQPSLQLSLKDLQTVSS------------------------</td>
<td>GMAVWGQGTVTVSSASTKGPSS</td>
</tr>
<tr>
<td>QVQLVESGGGLVQPGGSLRLSCAASGFTFRDS--YVMSWVRQRAPGKGLEWVSTSSGSGSNIYYADSVKGRFTISRDNSKNTSLYLQMNSLRAEDTATAYVYCRDSS---SLGDYWGQGTVTIVSGASAPAT---XSYGYYFHDWGQGTVTVSSASTKGPSS</td>
<td></td>
</tr>
</tbody>
</table>

Table 1B. Multiple alignment for deduced amino acid sequences of anti-IGF1R scFv VH Fragments

<table>
<thead>
<tr>
<th>Amino Acid Sequence</th>
<th>Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>QVQLTQPP-SVSVGPTQKTVSSGCGQGTVTVSSASTKGPSSASTKGPSS</td>
<td>GMAVWGQGTVTVSSASTKGPSS</td>
</tr>
</tbody>
</table>

www.ddtjournal.com
is attributable to the scFv portions and not due to the phage itself.

3.3. Expression of a soluble scFv protein from a phage-displaying human scFv

Although different *E. coli* strains transfected with phages derived from the original phage library were subjected to induction of scFv protein expression by IPTG, levels of expression of scFv proteins in this modified system were much lower than in the conventional system (21). SDS-PAGE/CBB staining (Figure 4A) and Western blotting/anti-E tag Ab immunostaining (Figure 4B) revealed an expression profile typical of scFv proteins produced from TOP10-FS infected with phages. The immunostaining did not reveal any apparent bands with ~30 kDa scFvs, indicating that respective scFv proteins were not produced.

3.4. Expression, purification and evaluation of MBP-scFv

To thus produce and purify scFv proteins, one of the isolated scFvs was expressed as a MBP-fused protein in *E. coli* and was expected to be a highly soluble and stable protein (20). The 5E4 scFv gene, selected as a model scFv gene encoding a typical scFv sequence, was inserted into pMAL-p2E vector as illustrated in Figure 5A. *E. coli* JM109, transformed with pMAL-p2E-5E4, was cultured with IPTG to induce the 5E4 MBP-scFv. Periplasm fractions were collected and subjected to two step-affinity chromatography purification. Each purification step was monitored by SDS-PAGE (Figure 5B). Both MBP and MBP-scFv proteins were recovered after the first affinity chromatography step (Figure 5B, lane 3), but only the MBP-scFv fusion protein was purified to apparent homogeneity by the second affinity chromatography step (Figure 5B, lane 5). The yield of purified MBP-scFv was 0.3 mg from 1L culture. As a control, MBP protein was expressed, purified, and analyzed by SDS-PAGE (Figure 5A, lane 6). The binding affinity of MBP-scFv for IGF-IR was evaluated by ELISA. As seen in Figure 6A, the purified MBP-scFv bound to IGF-IR in a dose-dependent manner whereas the purified MBP protein did not bind to IGF-IR, indicating that the binding of MBP-scFv to IGF-IR was via its scFv domain. Further analysis of MBP-scFv revealed cross-reactivity to rhIR (Figure 6B), which shares sequence and structural similarities. This result implied that the scFv recognizes the epitopes that are shared by IGF-IR and IR.

![Figure 3. SPR analyses of scFv-presenting phage antibodies. Phage antibodies at indicated concentrations were passed over the IGF-IR-immobilized CM3 chip at a flow rate of 5 μL/min as described in the Methods. The sensorgrams are 2A1 (A), 3E2 (B), 3H5 (C), and 4C5 (D) phage antibodies, respectively.](Image 354x370 to 529x524)

![Figure 4. SDS-PAGE/Western blotting analysis of expression levels of isolated scFv proteins. Periplasm fractions (10 μg/lane) extracted from *E. coli* infected with phages were subjected to SDS-PAGE/CBB stain (Figure 4A) or blotted onto a PVDF membrane that was immunostained with HRP-anti-E tag Ab (Figure 4B).](Image 354x579 to 529x728)
4. Discussion

This study achieved successful isolation of phage antibodies bearing human scFvs against IGF-IR. As anticipated, expression of scFv proteins in the periplasmic space of phage-infected E. coli was so difficult that one of scFv proteins was fused with MBP. The resulting fused protein was successfully produced and purified by two-step affinity chromatography. MBP-scFv clearly exhibited binding affinity for IGF-IR whereas MBP did not bind to the antigen, which suggested that the IGFI-IR binding affinity of MBP-scFv protein was attributable to the scFv domain. Further experiments, however, revealed that MBP-scFv cross-reacted to rhIR, implying that the scFv recognizes the epitopes that are shared by IGF-IR and IR. This result highlights the importance of vigorous screening with the use of two or more independent approaches during isolation of candidate clones from a phage display library.

Since phage display technology provides genes that encode scFvs with specificity of interest, recombinant antibodies including completely human IgGs for therapeutic applications can readily be produced. However, the best clones must be chosen after completing initial characterization of scFv proteins from isolated phage clones by examining whether scFvs have high specificity and affinity for the antigen of interest. Usually, this can be achieved by inducing the production of scFv protein in phage-infected E. coli. Although scFvs that can be expressed in the...
cytoplasm of cells have considerable biotechnological
and therapeutic potential, the reducing environment of
the cytoplasm inhibits the formation of disulfide bonds
that are essential for correct folding and functionality
of the antibody fragments. Thus, scFvs expressed
in the cytoplasm are mostly insoluble and inactive.
Alternatively, scFv proteins are often expressed in the
periplasmic space, though this process is not always
successful, as indicated by the current results (Figure 4).
As a general approach to stabilizing scFvs for efficient
functional expression in the cell cytoplasm, scFvs were
expressed as C-terminal fusions with the E. coli MBP
(24). A previous study demonstrated that MBP-fused
scFvs are expressed at high levels in the cytoplasm
of E. coli as soluble and active proteins regardless of the
redox state of the bacterial cytoplasm, suggesting
that MBP seems to function as a molecular chaperone
that promotes the solubility and stability of scFvs. In
this study, MBP-scFv protein was expressed in the
periplasm, which should further facilitate stability of
the expressed protein. In conclusion, this study
demonstrated that MBP-scFv can be expressed as a
recombinant human scFv in the periplasm of E. coli,
which can be easily purified for further characterization.

References

1. LeRoith D, Roberts CT Jr. The insulin-like growth factor
2. Haddad T, Yee D. Targeting the insulin-like growth factor
The insulin-like growth factor 1 receptor in cancer: old
4. Maor S, Mayer D, Yarden RI, Lee AV, Sarfstein R,
Werner H, Papa MZ. Estrogen receptor regulates insulin-
like growth factor-I receptor gene expression in breast
tumor cells: involvement of transcription factor Sp1. J
5. Pandini G, Mineo R, Frasca F, Roberts CT Jr, Marcelli
M, Vigneri R, Belfiore A. Androgens up-regulate the
insulin-like growth factor-I receptor axis in prostate cancer
inhibition of MCF7 breast cancer cells by stable
expression of an insulin-like growth factor I receptor
antisense ribonucleic acid. Endocrinology 1995;
136:4298-4303.
7. Mitsiades CS, Mitsiades NS, McMullan CJ, Poulik V,
Shringarpure R, Akiyama M, Hideshima T, Chauhan D,
Joseph M, Liberman TA, Garcia-Echeverria C, Pearson
MA, Hofman F, Anderson KC, Kung AL. Inhibition of the
insulin-like growth factor receptor I tyrosine kinase
activity as a therapeutic strategy for multiple myeloma,
other hematologic malignancies, and solid tumors.
Cancer Cell 2004; 5:221-230.
8. Hofmann F, Garcia-Echeverria C. Blocking the insulin-
like growth factor-I receptor as a strategy for targeting
available anti-insulin-like growth factor I receptor
of human germline genes in a CDR homology-based
approach to antibody humanization. Methods 2005;
36:35-42.
11. Lonberg N. Human antibodies from transgenic animals.
12. Hoogenboom HR. Human antibodies from transgenic
13. Bothmann H, Plückthun A. The periplasmic Escherichia
coli peptidylprolyl cis,trans-isomerase FkpA. I.
Increased functional expression of antibody fragments
275:17100-17105.
14. Ramm K, Plückthun A. The periplasmic Escherichia coli
peptidylprolyl cis,trans-isomerase FkpA. II. Isomerase-
15. Dueñas M, Vázquez J, Ayala M, Söderlind E, Ohlin
M, Pérez L, Borrebaeck CA, Gavilondo JV. Intra- and
extracellular expression of an scFv antibody fragment
in E. coli: effect of bacterial strains and pathway
engineering using GroES/L chaperonins. Biotechniques
McCafferty J, Schofield DJ. A simple vector system to
improve performance and utilisation of recombinant
17. Oh MS, Kim KS, Jang YK, Maeng CY, Min SH, Jang
MH, Yoon SO, Kim JH, Hong HJ. A new epitope tag
from hepatitis B virus preS1 for immunodetection,
localization and affinity purification of recombinant
18. Sachdev D, Li SL, Hartell JS, Fujita-Yamaguchi Y,
Miller JS, Yee D. A chimeric humanized single-chain
antibody against the type I insulin-like growth factor
(IGF) receptor renders breast cancer cells refractory
to the mitogenic effects of IGF-I. Cancer Res 2003;
63:627-635.
19. Ye JJ, Liang SJ, Guo N, Li SL, Wu MA, Giannini S,
Sachdev D, Yee D, Brunner N, Ikle D, Fujita-Yamaguchi
Y. Combined effects of tamoxifen and a chimeric
humanized single chain antibody against the type I IGF
receptor on breast tumor growth in vivo. Horm Metab
20. Kapust RB, Waugh DS. Escherichia coli maltose-binding
protein is uncommonly effective at promoting the
solubility of polypeptides to which it is fused. Protein
K, Sato S, Asanuma H, Takayanagi A, Fujita-Yamaguchi
Y. Construction and characterization of single-chain
antibodies against human insulin-like growth factor-I
receptor from hybridomas producing 1H7 or 3B7
22. Sakai K, Shimizu Y, Chiba T, Matsumoto-Takasaki

www.ddtjournal.com

(Received July 18, 2008; Revised July 28, 2008; Accepted July 29, 2008)
The effects of dietary obesity on protein expressions of insulin signaling pathway in rat aorta

Sameer H. Fatani¹, Ebrahim K. Naderali¹,*, Sunil Panchiani², Feisal Shah³, Chris Wong⁴

¹Neuroendocrine and Obesity Biology Unit, School of Clinical Science, University of Liverpool, Liverpool L69 3GA, UK;
²Royal Liverpool Hospital, Prescott Street, Liverpool, L7 8XP, UK;
³Countess of Chester Hospital NHS Foundation Trust, Liverpool Road, Chester CH2 1UL, UK;
⁴Aintree University Hospital NHS Foundation Trust, Longmoor lane, Liverpool, L9 7AL, UK.

ABSTRACT: The deleterious effects of obesity on insulin response in vasculature may be due to changes in various components of insulin signaling pathway. Therefore, this study was designed to investigate effects of dietary-obesity, removal of palatable diet, and fenofibrate treatment on protein expressions of insulin signaling pathway in rat aorta. Adult male Wistar rats were fed either standard chow or a palatable diet (untreated obese animals) for 15 weeks. Another group of rats were fed the palatable diet for 8 weeks followed by standard chow for further 7 weeks, while a further group were fed the palatable diet for 15 weeks and were dosed with fenofibrate (50 mg/kg/day) for the last 7 weeks. Untreated obese animals had significantly higher body weight than other three groups (p < 0.05 for all). There were no significant differences between IR-β, IRS1 and IRS2, Akt, Shc, and ERK1/2 levels in chow-fed and untreated obese animals, while PI 3-kinase level were significantly (p < 0.0001) decreased in untreated obese animals. Chronic removal of palatable diet completely reversed the levels of PI 3-kinase to the normal while, fenofibrate treatment further reduced PI 3-kinase levels. On the other hand, there was a significant (p < 0.05) increase in eNOS in untreated obese animals compared with chow-fed controls. This effect was reversed by removal of palatable diet and fenofibrate treatment. These data suggest that dietary-obesity selectively inhibits PI 3-kinase while, removal of obesity-inducing diet improves PI 3-kinase levels which may have a role in vascular reactivity.

Keywords: Obesity, Insulin resistance, Insulin signaling pathway, Vascular function, PI 3-kinase, Fenofibrate

¹Correspondence to: Dr. Ebrahim K. Naderali, Neuroendocrine and Obesity Biology Unit, School of Clinical Science, University of Liverpool, Daulby Street, Liverpool L69 3GA, UK; e-mail: naderali@liv.ac.uk

1. Introduction

Obesity, characterized by excess adipose tissue is now becoming a worldwide epidemic (1,2). Various studies have suggested that obesity per se is an independent cardiovascular risk factor (3), as well as predisposing to type 2 diabetes, hypertension and dyslipidaemia (4). Furthermore, obesity induces insulin resistance which is associated with development of cardiovascular diseases that include hypertension (5), and reduced endothelial function (6). Insulin has a protective role in vascular function. It stimulates nitric oxide (NO) production, leading to vasorelaxation. Insulin-induced NO-dependent vasorelaxation is markedly decreased in obesity (7), however, the mechanism(s) of decrease in insulin-induced vasorelaxation is not fully understood. Insulin has other major physiological roles that include facilitation and increase of amino acid transport, glycogen synthesis, DNA synthesis and gene expression (8). Moreover, it specifically enhances release of nitric oxide (9,10), regulates mRNA matrix proteins (11) and constitutive endothelial NO synthase (12) activity in vasculature.

In vascular cells, the effects of insulin are initiated through binding to the insulin receptor alpha subunit (IR-α), which activates the intrinsic receptor tyrosine kinase (13), resulting in autophosphorylation of insulin receptor beta subunit (IR-β) and tyrosine phosphorylation of intracellular adaptor proteins - insulin receptor substrates (IRS-1 and IRS-2) (14) and Shc (15). Tyrosine phosphorylated IRS-1 or IRS-2 then binds to src-homology 2 (SH2) domains of intracellular proteins, including the p85 regulatory subunit of phosphatidylinositol (PI) 3-kinase (16). The interactions of IRS and p85 subunit of PI 3-kinase results in the activation of p110 catalytic subunit of PI 3-kinase. Activation of PI 3-kinase increases serine phosphorylation of Akt which in turn, directly phosphorylates eNOS on serine 1177 and activates the enzyme, leading to increased NO production and thus providing vascular protection (17). Tyrosine
phosphorylated She and IRS proteins can also bind to SH2 domain of Growth factor Receptor-protein Bound 2 (GRB2), leading to the activation of the Ras-Raf- MAP kinase signal pathway that is associated with gene expression and cell growth. 3-kinase expression and activation has been linked to NO production, whereas, Raf-MAP kinase pathway is associated with the growth of vascular cells and the expression of extracellular matrix proteins. Furthermore, various studies have shown attenuation of insulin-induced vasorelaxation in obesity, however, there is little information on the mechanism of diet-induced changes in insulin signaling pathway in vasculature. Therefore, it is possible that changes in any component of insulin signaling pathway may alter vasorelaxant property of insulin. Furthermore, the level of protein expression of these kinases could fluctuate and respond differentially to any pathological, physiological, or pharmacological conditions, such as dietary obesity and its treatment. Therefore, investigating the protein expression of these kinases under certain obesity-related experimental conditions could provide vital information about obesity-induced insulin resistance in vascular tissues. Consequently, we aimed in this study to investigate the protein expression of insulin signaling components in aorta of four different experimental groups, namely, 1) control chow-fed animals, 2) untreated diet-induced obese animals, 3) obese animals following chronic withdrawal of palatable diet, and 4) obese animals treated with fenofibrate. Fenofibrate has been shown to improve lipid profiles, reduce adiposity, and may have a role in correction of vascular function in obesity.

2. Materials and Methods

2.1. Animal and experimental protocol

All procedures used in this study were approved by the institutional committee and accord with current UK legislations. Adult male Wistar rats (n = 28, 190 ± 3 g) were randomized and assigned to a control group (n = 7) and a test group (n = 21). All animals had free access to water and were housed individually under controlled environmental conditions (19-22°C; 30-40% humidity) and a 12 h light-dark cycle (lights on at 07:00 h). Controls were fed standard laboratory pelleted diet (Chow-fed; CRM Biosure, Cambridge, UK), while test group had free access to a highly-palatable diet consisting of (by weight) 33% ground pellet diet, 33% Nestlé condensed milk, 7% sucrose and 27% water. The energy content of chow was: 60% as carbohydrate, 30% as protein, and 10% as fat, and that of palatable diet was 65% as carbohydrate, 19% as protein and 16% as fat. Chow-fed controls remained on their prospective diet for 15 weeks, while after 8 weeks palatable-diet-fed animals were subdivided into three subgroups (each group 7 animals). In the first subgroup, palatable diet was removed and the standard chow diet was re-introduced (diet-to-chow), while the second subgroup remained on palatable diet and were given fenofibrate (fenofibrate-treated, 50 mg/kg/day) by oral gavage for further 7 weeks and the third subgroup (diet-fed) was given vehicle (1% carboxymethyl cellulose at 1 mL/kg body weight; Sigma, UK), by oral gavage daily for 7 weeks. On the day of experiment (after 15 weeks), the rats were killed by CO2 inhalation after 2 h of fasting and the aorta was dissected and snap frozen in liquid nitrogen for molecular studies.

2.2. Protein extraction

Fifty milligram of aorta was homogenized at 4°C in 500 μL buffer containing 120 mM NaCl, 10% glycerol, 2 mM Na2VO4, 1% Nonidet-P40, 1 mM PMSF, 10 mM Na3P2O7, 100 mM NaF, 20 mM Tris (pH 7.6) and a complete mini protease inhibitor cocktail with polytron homogenizer. The homogenates were then incubated on a rocking platform at 4°C for 30 min. After 3 × 10 sec bursts of sonication, tubes were subsequently centrifuged for 45 min at 13,000 × g at 4°C. Supernatants were collected, and protein concentrations were determined by the BCA method kit.

2.3. Western-immunoblotting

2.3.1. SDS-PAGE

A discontinuous acrylamide gel system was used. A stacking gel (5%) was set above a 10% (depending on protein of interest) resolving gel. Samples were standardized to 4 mg/mL with lysis buffer. 20 μL of sample protein was boiled in 20 μL 2 × electrophoresis sample buffer, for 10 min and then subjected to SDS-PAGE (Tris-glycine buffer, 100 V). Resolved proteins were electro blotted onto nitrocellulose membranes in buffer containing 25 mM Tris, 190 mM glycine, 1% SDS (w/v) and 20% (v/v) methanol (100 V for 1 h). Staining immobilized proteins on nitrocellulose with Ponceau S assessed successful transfer. Nitrocellulose blots were sub-merged in 0.2% Ponceau S for 15 min with agitation. Blots were then washed with 1 × PBS with 1% Tween, until proteins could be visualized. Blots were then washed until protein bands had disappeared.

2.3.2. Immunoblotting

Non-specific binding proteins were prevented by incubating the blot with blocking buffer (5% milk powder, 1 × PBS) at room temperature for one hour, followed by immunoblotting with appropriate primary antibody (1:500 dilution) made up in blocking buffer, left overnight at 4°C. Blots were then washed in 1 × PBS with 1% Tween and incubated with secondary antibody (1:1,000), a HRP linked anti-rabbit for 1 h at room temperature. Proteins were detected using enhanced Western-immunoblotting with 1% Tween, until proteins could be visualized. Blots were then washed until protein bands had disappeared.

www.ddtjournal.com
chemiluminescence method. Positive controls were included for standardization of samples between blots and molecular weights markers were used for sizing bands. Densitometry was used to quantify protein bands.

2.4. Chemicals and antibodies

SDS-PAGE and immunoblotting equipments were obtained from Bio-Rad (Richmond, Calif., USA). Tris, phenylmethylsulfonylfluoride (PMSF), aprotinin, dithiothreitol, Tween-20 and glycerol were obtained from Sigma Chemicals (Sigma Ltd., UK). Complete mini protease inhibitor cocktail was obtained from Roche Diagnostics Ltd. (East Sussex, UK). BCA (Bicinconinic acid) method kit for protein determination was obtained from (Sigma Ltd., UK). Secondary antibody, an HRP-linked anti-rabbit was purchased from (Serotic, Oxford, UK). Molecular weight marker was obtained from (BioRad Laboratoties Ltd., Hertfordshire, UK) Polyclonal antibodies against beta subunit of insulin receptor (C-19, sc-711), IRS-1 (C-20, sc-559), IRS-2 (A-19, sc-1556), eNOS (NOS3, C-20, sc-654), Akt1 (C-20, sc-1618), Shc (C-20, sc-288: specific for Shc p46, p52 and p66) and ERK1 (C-16, sc-93: reactive with ERK1 p44 and, to lesser extent, ERK2 p42) and PI 3-kinase were purchased from Santa Cruz Biotechnology (Santa Cruz, Calif., USA).

2.5. Data interpretation and statistical analysis

Changes in body weights of each group were collected weekly and are expressed as absolute total body weight respectively. For Western blotting, the data from chow-fed (control) animals were expressed as 100% response, and the results from other three groups were normalized and subsequently expressed as the percentage of their respective controls. Data are expressed as mean ± S.E.M. Data have normal distribution (Shapiro Wilk W test). Statistical significance was tested using Student 't-test' or repeated-measures (ANOV A; Bonferroni t-test) or the Mann-Whitney test, as appropriate. Results were considered statistically significant at the p < 0.05 levels.

3. Results

3.1. Changes in total body weight

Animals given palatable diet progressively gained more weight than their chow-fed counterparts. A significant difference in total body weight was observed after 5th week of feeding and further increased after 8th week when diet-fed animals had significantly (> 10%, p = 0.0041) higher total body weight than chow-fed controls. At the end of the experiment, body weight of diet-to-chow and fenofibrate treated animals were significantly (p < 0.01) lower than untreated diet-fed animals (Figure 1).

3.2. Protein expression studies

3.2.1. IR-β

There were no significant differences in IR-β protein levels in aorta from chow-fed, untreated diet-fed and diet-to-chow animals, while aorta from fenofibrate-treated animals had significantly (up to 30%, p < 0.001) higher IR-β protein levels than chow-fed group (Figure 2).

Figure 1. The effect of palatable diet, its removal, and fenofibrate treatment on total body weight in the rat. Animals were fed either standard chow (chow-fed) or a palatable diet (diet-fed) for 15 weeks. Fenofibrate treated group was fed palatable diet for 15 weeks and received fenofibrate (50 mg/Kg/day) for the last 7 weeks, while diet-to-chow group was fed palatable diet for the first 8 weeks and chow for the last 7 weeks of the experiment. At the end of the experiment (15 weeks) diet-fed animals weighed significantly greater (p < 0.02) than the chow-fed group, while that of fenofibrate-treated, and diet-to-chow groups (p < 0.0002, 0.002, and 0.02, respectively). The body weight of diet-to-chow group was significantly greater (p < 0.02) than the chow-fed group, while that of the fenofibrate-treated group was not significantly (p < 0.06) different from the chow-fed group. Data are expressed as mean ± S.E.M.

Figure 2. Protein expression of IR-β in the rat aorta. Equal amounts (40 μg/well) of protein were separated by SDS-PAGE and immunoblotted with IR-β antibody. The animal groups are: C) chow-fed lean control, V) Vehicle group (untreated dietary obese), DC) Diet-to-Chow group, and F) fenofibrate treated group. Data (mean ± SEM; n = 7) are normalised to that of control group and expressed as a percentage of the chow fed (control) rats. * p < 0.05 vs chow fed.
3.2.2. IRS-1 and IRS-2

As with IR-β, the IRS-1 and IRS-2 levels in chow-fed, untreated diet-fed and diet-to-chow fed groups were comparable, while aorta from fenofibrate-treated animals had significantly higher levels of both IRS-1 (26%, $p < 0.05$) and IRS-2 (25%, $p < 0.05$) compared to chow-fed group (Figure 3).

3.2.3. PI 3-kinase

Compared with chow-fed animals, there was a marked reduction in PI 3-kinase levels in untreated diet-fed animals (59%, $p < 0.001$). PI 3-kinase levels were further reduced by fenofibrate-treatment (92%, $p < 0.0001$), while removal of palatable diet completely reversed the reduction in PI 3-kinase levels seen in diet-fed group (Figure 4).

3.2.4. Akt

The protein levels of Akt were similar in chow-fed, untreated diet-fed and fenofibrate-treated animals, while aorta from diet-to-chow group had significantly lower (13%, $p < 0.01$) levels of Akt protein (Figure 5).
3.2.5. eNOS

There was a significant (25%, $p < 0.001$) elevation of eNOS levels in aorta from untreated diet-fed animals compared with that of chow-fed control, while removal of diet or fenofibrate-treatment markedly reduced the elevation of eNOS protein concentration seen in untreated diet-fed animals (Figure 6).

3.2.6. Shc

Although, Shc protein levels were not significantly altered by diet feeding but removal of the diet or fenofibrate-treatment significantly (by up to 20%, $p < 0.05$) attenuated Shc levels in comparison to that of chow-fed controls (Figure 7).

3.2.7. ERK1/2

Immunoblotting analysis of ERK1/2 (MAP kinase pathway) protein in all four groups was remarkably similar to each other. Palatable-diet feeding in the presence or absence of fenofibrate had no effect on ERK1/2 levels nor did the removal of the palatable diet altered ERK1/2 levels in aorta (Figure 8).

4. Discussion

Interactions between insulin, IR-β, IRS-1, and IRS-2 activates PI 3-kinase pathway that results in vasorelaxation. Therefore, the integrity of protein levels and activation of the cascade in insulin signaling pathway in vasculature is a crucial factor in mediating normal vascular functions. In the present study, dietary-obesity did not adversely alter the concentrations of IR-β, IRS-1, and IRS-2, suggesting that reduced vasorelaxation to insulin seen in dietary-obesity (7,19) may not be due to the changes in protein levels of IR-β, IRS-1, and IRS-2. This raises possibility that attenuated insulin responses seen in obesity (7,19) may be due to changes in protein levels beyond membrane receptors. In fact, the present study indicates a marked decrease in PI 3-kinase levels in aorta from dietary-obese rats, suggesting that dietary-obesity adversely affects PI3-kinase protein level and thereby reducing insulin-induced vasorelaxation. Studies on genetically obese animals have reported similar observation. Jiang and colleagues have shown reductions in IRS-1, and IRS-2 but not IRS-β protein levels in obese Zucker rats in comparison with lean animals (20). Moreover, the
same study reported a marked inhibition of PI 3-kinase activation in aorta of fatty-Zucker rats. Although, in this study we did not measure insulin-induced phosphorylation of signaling components, however, low level of PI 3-kinase seen in our study together with reduced functionality of PI 3-kinase reported on Zucker rats (20) may play an important role in integrity of endothelial function. A similar finding has also been reported in human umbilical vein endothelial cells where inhibition of PI 3-kinase markedly attenuated insulin-stimulated NO production (21), further arguing for a significant role of PI 3-kinase-changes in endothelial dependent insulin-induced vasorelaxation.

We have reported that, in obese animals, removal of obesity-inducing diet completely restores endothelial function (22) suggesting that reversal of adiposity might be of benefit in correcting obesity-induced attenuation of PI 3-kinase. In fact, in our present study, PI 3-kinase levels were resorted in diet-to-chow group, further strengthening the hypothesis that PI 3-kinase levels may determine the magnitude of endothelial function in obesity. Therefore, it is possible that any deficiency in the concentrations of PI 3-kinase may participate in inducing insulin resistance in vascular system accompanied with reduced NO production, leading to endothelial dysfunction.

In this study, fenofibrate-treatment further reduced PI(3)-kinase. Peroxisome proliferator-activated receptor (α) (PPAR-α) plays a crucial role in the control of mitochondrial B-oxidation of fatty acids (23,24). Moreover, PPAR-α expressed in the vascular tissue, mainly the endothelial cells (25). Therefore, it is plausible to assume that the increased intracellular fatty acids and the presence of abundant amount of PPAR-α agonist (fenofibrate) may enhance fatty acid oxidation leading to increase in the intracellular fatty acid metabolites. Fatty acid metabolites such as fatty acyl-CoA, diacylglycerols, and ceramides shown to alter insulin signaling and induce insulin resistance (26) thus causing reduction in PI3 kinase levels in these animals.

Functionally active PI 3-kinase stimulates Akt, which in turn activates eNOS, leading to production of NO and subsequent vasorelaxation (21). In our study, protein levels of Akt were similar between dietary-obese and lean aorta while removal of palatable diet caused marked decrease in Akt levels. On the other hand, to our surprise there was a significant increase of eNOS levels in the obese group, whereas, removal of palatable diet or fenofibrate treatment restored eNOS levels to that of lean control group. Although, increased eNOS level in this study is suggestive of augmented endothelial-dependent vasorelaxation, but numerous human and animal studies have shown attenuated endothelial function in obesity (6,19,27). There are several possibilities on increased level of eNOS in obese animals. One possible explanation, is activation of a compensatory mechanism to overcome the decrease in NO production or increase inactivation of NO seen in arteries of dietary obese rats as a result of increased oxidative stress (28). Moreover, in obese animals there are elevation of insulin concentration and endothelial dysfunction (22). Furthermore, insulin is a potent enhancer of reactive oxygen species (ROS) synthesis in endothelial and vascular smooth muscle cells, and superoxide is known to reduce NO and subsequently increased vasoconstriction (29,30), thus, the elevation of eNOS could compensate this reduction. Insulin is also shown to induce eNOS expression in endothelial cells (31,32) and therefore, insulinaemia which observed in obese rats could directly be responsible for the enhancement of eNOS expression. Similar results and hypothesis have also been reported by others indicating an increase in eNOS levels in Zucker obese coronary (28) and cerebral (33) arteries. However, the function of eNOS maybe regulated by the PI 3-kinase or MAP-kinase pathway (34), and thus decrease in PI 3-kinase seen in untreated obese rats may cancel any beneficial effects of increased eNOS. Furthermore, activated VEGF stimulates eNOS expression at both mRNA and protein levels in a does-dependent manner (34), suggesting that the elevated levels of eNOS in dietary-obese group seen in the present study maybe due to increased level of VEGF through MAP-kinase pathway, correlating positively with the dietary-obese subjects (35). Therefore, restoration (i.e. reduction) of total body fat seen in diet-to-chow and fenofibrate-treated animals, may have resulted in reduced effect of VEGF on eNOS expression (35) and thus improved vascular function (22,36). Inhibition of PI 3-kinase pathway enhances the mitogenic actions of insulin through MAP kinase pathway (37). Hence, it is possible that inhibition of PI 3-kinase pathway seen in both untreated dietary-obese and fenofibrate treated groups may cause over activation of other signaling pathway such as MAP kinase, resulting in the genesis of atherosclerosis and cardiovascular disease.

In conclusion, the present study demonstrates for the first time that long term feeding (15 weeks) of animals with an obesity-inducing palatable diet causes selective changes in protein levels of PI 3-kinase-dependent signaling pathway in aorta. Chronic withdrawal of obesity-inducing diet causes a complete normalization of PI 3-kinase, while fenofibrate treatment failed to improve PI 3-kinase concentrations in dietary-obese animals. A reduction in PI 3-kinase levels may have a role in inducing insulin resistance in vasculature, contributing to increased incidence of cardiovascular events seen in obese subjects. Furthermore, we also postulate that, the inhibition of PI 3-kinase pathway may result in increased activation of MAP kinase pathway leading to an increased proliferation and migration of endothelial cells, thereby increasing the risk of cardiovascular events. However, this hypothesis merits further investigation. Furthermore, the adverse
effects of dietary obesity on insulin transduction in vasculature are post receptor, on the level of PI3-kinase and downstream, and reversible, mainly by removal of obesity-inducing diet, which may have a role in combating diet-induced obesity-related cardiovascular dysfunction.

Acknowledgments

This study was supported by a grant from British Heart Foundation (FS/02/002).

References

(Received August 15, 2008; Accepted August 29, 2008)
Drug Discoveries & Therapeutics

Guide for Authors

1. **Scope of Articles**

Drug Discoveries & Therapeutics mainly publishes articles related to basic and clinical pharmaceutical research such as pharmaceutical and therapeutic chemistry, pharmacology, pharmacy, pharmacokinetics, industrial pharmacy, pharmaceutical manufacturing, pharmaceutical technology, drug delivery, toxicology, and traditional herb medicine. Studies on drug-related fields such as biology, biochemistry, physiology, microbiology, and immunology are also within the scope of this journal.

2. **Submission Types**

Original Articles should be reports new, significant, innovative, and original findings. An Article should contain the following sections: Title page, Abstract, Introduction, Materials and Methods, Results, Discussion, Acknowledgments, References, Figure legends, and Tables. There are no specific length restrictions for the overall manuscript or individual sections. However, we expect authors to present and discuss their findings concisely.

Brief Reports should be short and clear reports on new original findings and not exceed 4000 words with no more than two display items. *Drug Discoveries & Therapeutics* encourages younger researchers and doctors to report their research findings. Case reports are included in this category. A Brief Report contains the same sections as an Original Article, but Results and Discussion sections must be combined.

Reviews should include educational overviews for general researchers and doctors, and review articles for more specialized readers.

Policy Forum presents issues in science policy,including public health, the medical care system, and social science. Policy Forum essays should not exceed 2,000 words.

News articles should not exceed 500 words including one display item. These articles should function as an international news source with regard to topics in the life and social sciences and medicine. Submissions are not restricted to journal staff—anyone can submit news articles on subjects that would be of interest to Drug Discoveries & Therapeutics’ readers.

Letters discuss material published in *Drug Discoveries & Therapeutics* in the last 6 months or issues of general interest. Letters should not exceed 800 words and 6 references.

3. **Manuscript Preparation**

Preparation of text. Manuscripts should be written in correct American English and submitted as a Microsoft Word (.doc) file in a single-column format. Manuscripts must be paginated and double-spaced throughout. Use Symbol font for all Greek characters. Do not import the figures into the text file but indicate their approximate locations directly on the manuscript. The manuscript file should be smaller than 5 MB in size.

Title page. The title page must include 1) the title of the paper, 2) name(s) and affiliation(s) of the author(s), 3) a statement indicating to whom correspondence and proofs should be sent along with a complete mailing address, telephone/fax numbers, and e-mail address, and 4) up to five key words or phrases.

Abstract. A one-paragraph abstract consisting of no more than 250 words must be included. It should state the purpose of the study, basic procedures used, main findings, and conclusions.

Abbreviations. All nonstandard abbreviations must be listed in alphabetical order, giving each abbreviation followed by its spelled-out version. Spell out the term upon first mention and follow it with the abbreviated form in parentheses. Thereafter, use the abbreviated form.

Introduction. The introduction should be a concise statement of the basis for the study and its scientific context.

Materials and Methods. Subsections under this heading should include sufficient instruction to replicate experiments, but well-established protocols may be simply referenced. *Drug Discoveries & Therapeutics* endorses the principles of the Declaration of Helsinki and expects that all research involving humans will have been conducted in accordance with these principles. All laboratory animal studies must be approved by the authors’ Institutional Review Board(s).

Results. The results section should provide details of all of the experiments that are required to support the conclusions of the paper. If necessary, subheadings may be used for an orderly presentation. All figures, tables, and photographs must be referred in the text.

Discussion. The discussion should include conclusions derived from the study and supported by the data. Consideration should be given to the impact that these conclusions have on the body of knowledge in which context the experiments were conducted. In Brief Reports, Results and Discussion sections must be combined.

Acknowledgments. All funding sources should be credited in the Acknowledgments section. In addition, people who contributed to the work but who do not fit the criteria for authors should be listed along with their contributions.

References. References should be numbered in the order in which they appear in the text. Cite references in text using a number in parentheses. Citing of unpublished results and personal communications in the reference list is not recommended but these sources may be mentioned in the text. For all references, list all authors, but if there are more than fifteen authors, list the first three authors and add “et al.” Abbreviate journal names as they appear in PubMed. Web references can be included in the reference list.

Example 1:

Figure legends. Include a short title and a short explanation. Methods described in detail in the Materials and methods section should not be repeated in the legend. Symbols used in the figure must be explained. The number of data points represented in a graph must be indicated.

Tables. All tables should have a concise title and be typed double-spaced on pages separate from the text. Do not use vertical rules. Tables should be numbered with Roman numerals consecutively in accordance with their appearance in the text. Place footnotes to tables below the table body and indicate them with lowercase superscript letters.

Language editing. Manuscripts submitted by authors whose primary language is not English should have their work proofread by a native English speaker before submission. The Editing Support Organization can provide English proofreading, Japanese-English translation, and Chinese-English translation services to authors who want to publish in Drug Discoveries & Therapeutics and need assistance before submitting an article. Authors can contact this organization directly at http://www.iacmhr.com/iac-esd.

IAC-ESO was established in order to facilitate manuscript preparation by researchers whose native language is not English and to help edit work intended for international academic journals. Quality revision, translation, and editing services are offered by our staff, who are native speakers of particular languages and who are familiar with academic writing and journal editing in English.

4. Figure Preparation

All figures should be clear and cited in numerical order in the text. Figures must fit a one- or two-column format on the journal page: 8.3 cm (3.3 in.) wide for a single column; 17.3 cm (6.8 in.) wide for a double column; maximum height: 24.0 cm (9.5 in.). Only use the following fonts in the figure: Arial and Helvetica. Provide all figures as separate files. Acceptable file formats are JPEG and TIFF. Please note that files saved in JPEG or TIFF format in PowerPoint lack sufficient resolution for publication. Each Figure file should be smaller than 10 MB in size. Do not compress files. A fee is charged for a color illustration or photograph.

5. Online Submission

Manuscripts should be submitted to Drug Discoveries & Therapeutics online at http://www.ddtjournal.com. The manuscript file should be smaller than 10 MB in size. If for any reason you are unable to submit a file online, please contact the Editorial Office by e-mail: office@ddtjournal.com.

Editorial and Head Office

Wei TANG, MD PhD
Secretary-in-General
TSUIN-IKIZAKA 410
2-17-5 Hongo, Bunkyo-ku
Tokyo 113-0033
Japan
Tel: 03-5840-9697
Fax: 03-5840-9698
E-mail: office@ddtjournal.com

6. Accepted Manuscripts

Proofs. Rough galley proofs in PDF format are supplied to the corresponding author via e-mail. Corrections must be returned within 4 working days of receipt of the proofs. Subsequent corrections will not be possible, so please ensure all desired corrections are indicated. Note that we may proceed with publication of the article if no response is received.

Transfer of copyrights. Upon acceptance of an article, authors will be asked to agree to a transfer of copyright. This transfer will ensure the widest possible dissemination of information. A letter will be sent to the corresponding author confirming receipt of the manuscript. A form facilitating transfer of copyright will be provided. If excerpts from other copyrighted works are included, the author(s) must obtain written permission from the copyright owners and credit the source(s) in the article.

Cover submissions. Authors whose manuscripts are accepted for publication in Drug Discoveries & Therapeutics may submit cover images. Color submission is welcome. A brief cover legend should be submitted with the image.

Revised February 2008
JOURNAL PUBLISHING AGREEMENT

Ms No:

Article entitled:

Corresponding author:

To be published in Drug Discoveries & Therapeutics

Assignment of publishing rights:
I hereby assign to International Advancement Center for Medicine & Health Research Co., Ltd. (IACMHR Co., Ltd.) publishing Drug Discoveries & Therapeutics the copyright in the manuscript identified above and any supplemental tables and illustrations (the articles) in all forms and media, throughout the world, in all languages, for the full term of copyright, effective when and if the article is accepted for publication. This transfer includes the rights to provide the article in electronic and online forms and systems.

I understand that I retain or am hereby granted (without the need to obtain further permission) rights to use certain versions of the article for certain scholarly purpose and that no rights in patent, trademarks or other intellectual property rights are transferred to the journal. Rights to use the articles for personal use, internal institutional use and scholarly posting are retained.

Author warranties:
I affirm the author warranties noted below.
1) The article I have submitted to the journal is original and has not been published elsewhere.
2) The article is not currently being considered for publication by any other journal. If accepted, it will not be submitted elsewhere.
3) The article contains no libelous or other unlawful statements and does not contain any materials that invade individual privacy or proprietary rights or any statutory copyright.
4) I have obtained written permission from copyright owners for any excerpts from copyrighted works that are included and have credited the sources in my article.
5) I confirm that all commercial affiliations, stock or equity interests, or patent-licensing arrangements that could be considered to pose a financial conflict of interest regarding the article have been disclosed.
6) If the article was prepared jointly with other authors, I have informed the co-authors(s) of the terms of this publishing agreement and that I am signing on their behalf as their agents.

Your Status:
☐ I am the sole author of the manuscript.
☐ I am one author signing on behalf of all co-authors of the manuscript.

Please tick one of the above boxes (as appropriate) and then sign and date the document in black ink.

Signature: Date:

Name printed:

Please return the completed and signed original of this form by express mail or fax, or by e-mailing a scanned copy of the signed original to:

Drug Discoveries & Therapeutics office
TSUIN-IKIZAKA 410, 2-17-5 Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan
E-mail: proof-editing@ddtjournal.com
Fax: +81-3-5840-9698