Drug Discov Ther. 2015;9(3):197-204. (DOI: 10.5582/ddt.2015.01038)
Hispidin and related herbal compounds from Alpinia zerumbet inhibit both PAK1-dependent melanogenesis in melanocytes and reactive oxygen species (ROS) production in adipocytes.
Be Tu PT, Chompoo J, Tawata S
Recently several compounds from Okinawa plants including Alpinia zerumbet (alpinia) were shown to inhibit directly the oncogenic/ageing kinase PAK1 (p21-activated kinase 1). Furthermore, it was recently revealed that both PAK1 and PAK4 (p21-activated kinase 4) are equally essential for the melanogenesis in melanoma cells. Thus, in this study, we tested if several alpinia compounds inhibit the melanogenesis in melanoma (B16F10) cells, as well as the PAK1-dependent up-regulation of both reactive oxygen species (ROS) and nitric oxide (NO) in cultured adipocytes (3T3-L1) without any cytotoxicity. The effect of alpinia compounds on the melanogenesis was measured by both the melanin content and intracellular tyrosinase activity in melanoma cells treated with 3-isobutyl-1-methylxanthine (IBMX), a melanogenesis stimulating hormone. We found that (1E,3E,5E)-6-methoxyhexa- 1,3,5-trien-1-yl)-2,5-dihydrofuran (MTD), 5,6-dehydrokawain (DK), labdadiene, hispidin and dihydro-5,6-dehydrokawain (DDK) at 50 μg/mL reduced the melanin content by 63-79%. The MTD, DK and hispidin, at 50 μg/mL, inhibited tyrosinase activity by 70-83% in melanoma cells. Among these compounds, labdadiene, MTD, (E)-2,2,3,3-Tetramethyl-8-methylene-7-(oct-6-en-1-yl)octahydro-1H-quinolizine (TMOQ) and hispidin strongly inhibited the ROS production. Hispidin, labdadiene and MTD at 20 μg/mL inhibited NO production by over 70%. These findings altogether suggest that some of these alpinia compounds could be potentially useful for the prevention or treatment of hyperpigmentation and obesity.