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Usefulness of silkworm as a host animal for understanding 
pathogenicity of Cryptococcus neoformans
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1. Introduction

Cryptococcus neoformans is a pathogenic fungus that 
causes cryptococcosis in humans (1). C. neoformans is 
frequently isolated from immunocompromised patients. 
Cryptococcosis is one of the most causes of death in 
AIDS patients (2). Basic study using animal models 
that imitates human infectious disease is necessary 
to understand pathogenicity of C. neoformans and to 
establish prevention and therapeutic strategies against 
cryptococcosis. Various C. neoformans infection models 
with mammalian hosts have been proposed (3-5). 
Mammalian models, however, have problems of not only 
high cost but also of ethical issues from a view of animal 
welfare. Therefore, establishment of invertebrate animals 
for searching virulence factors of C. neoformans and for 
screening of therapeutic agents is desired. Invertebrate 
animals have advantages compared to mammals: 1) low 

cost for rearing, 2) smaller space needed for rearing, 3) 
less ethical issues by killing animals, and 4) less amount 
of samples because of smaller body size (Table 1). At 
present, besides silkworm (Bombyx mori) proposed by 
us (6), fruit fly (Drosophila melanogaster), nematode 
(Caenorhabditis elegans), and larvae of greater wax 
moth (Galleria mellonella) are proposed as host animals 
of C. neoformans infection (7-9). In this review, we 
describe usefulness of these invertebrates as host of C. 
neoformans infection.

2. C. neoformans infection model using silkworm

Silkworm is a larva of domesticated silkmoth, Bombyx 
mori. The rearing method is well-established during 
a long history of sericulture in Asian countries. We 
previously proposed various disease models, such as 
infectious diseases by pathogens, diabetes, and drug-
induced tissue injury, and use of these systems for 
screening of drug candidates (10-13). Among them, 
infection models including fungal infection are highly 
effective for screening virulence factors of pathogens and 
therapeutically effective antibiotics (14,15). Silkworm 
fungal infection models were reported for four species 
of fungi, Cryptococcus neoformans, Candida albicans, 
Candida grabrata, and Candida tropicalis (16). Several 
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fungal virulence factors were identified using these 
fungal models (17,18). We previously reported that 
silkworm C. neoformans infection model was useful for 
quantitative evaluation of C. neoformans pathogenecity 
and therapeutic effects of antifungal drugs (6). Silkworm 
survive at least three days at 37˚C, therefore, silkworm 
can be used for infection experiments at 37˚C (19). 
Injection of live fungal suspension of C. neoformans 
H99 strain into silkworm hemolymph causes killing 
effects at 37˚C. C. neoformans Serotype A, which has 
high pathogenicity against mammals, was shown to kill 
silkworm with less number of fungi than Serotype D, 
which has low pathogenicity against mammals. In other 
words, silkworm infection model can distinguish strains 
having different levels of pathogenicities.
 Deletion mutants of gpa1, pka1, and cna1 genes, 
which were reported to be needed to exhibit pathogenicity 
of C. neoformans against mammals (20-22), also showed 
higher LD50 values than that of parent strain. This means 
that these genes are also needed to exhibit pathogenicity 
against silkworms as well as mammals. Intra-hemolymph 
injections of amphotericin B, flucytosine, fluconazole, 
and ketoconazole showed therapeutic effect against 
death of silkworm by C. neoformans infection. On 
the other hand, amphotericin B, which is not absorbed 
from gut in mammals, did not show the therapeutic 
effect by intra-gut injection, which corresponds to oral 
administration in humans. This result can be explained 
by that amphotericin B is not absorbed from gut also in 
silkworm. From these results, we expect that silkworm 
C. neoformans infection model is useful as an alternative 
method to evaluate therapeutic efficacy of antifungal 
drugs.

3. C. neoformans infection models using other 
invertebrate models

D. melanogaster, a fruit fly, is widely used as a model 
animal (23). An advantage of D. melanogaster as an 
experimental animal is that different kinds of genetic 
approaches can be applicable (24). Using mutant 
libraries of D. melanogaster, the host immune system 
related to C. neoformans infection has been elucidated. 
In particular, mutants of Imd and Toll pathways, which 
are signal pathway related to innate immune system of 
D. melanogaster, were analyzed in the C. neoformans 
infection model (8). A mutant of Toll pathway was 
susceptible to C. neoformans infection, whereas a 
mutant of Imd pathway was not susceptible. Thus, Toll 
pathway plays a key role in the innate immunity against 
C. neoformans. Adult flies, not larvae, are generally 
used in infection experiments using D. melanogaster. 
Special micro injectors with glass syringes, not usual 
clinical syringe, are needed for injection, because the 
size of adults fly is very small, 2-3 mm. Therefore, 
determination of LD50 and ED50 by injection of precise 
volume of sample solution is very difficult. Experiments 
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with adults of D. melanogaster at 37˚C are not possible, 
since the flies cannot be reared at high temperatures.
 C. elegans also provides excellent animal model to 
perform genetic studies (25). Genes related to innate 
immunity in C. neoformans infection were identified 
using C. elegans (26-28). Capsule and other virulence 
factors of C. neoformans, which are needed to exhibit 
the pathogenicity against mammals, were reported to be 
needed to exhibit the pathogenicity against C. elegans (7). 
C. elegans was also used to screen virulence factors of C. 
neoformans (29-36). Moreover, C. neoformans infection 
model with C. elegans was also used to evaluate 
therapeutic effects of antifungal reagents (37,38).
 G. mellonella is large moth which belong to 
Lepidoptera, same as silkworm. G. mellonella has 
been studied as infection models of fungi including 
C. neoformans (39-42). G. mellonella is possible to 
perform infection experiments at 37˚C. Novel virulence 
factors of C. neoformans was also screened using the G. 
mellonella model (43). Evaluation of therapeutic effects 
of antifungal drugs was reported with an infection model 
of C.neoformans with G. mellonella (9,44). Since its big 
body size, G. mellonella has a capacity to collect a large 
volume of hemolymph similar to silkworm (45).

4. Conclusions

Invertebrate animal hosts, silkworm (B. mori), fruit fly 
(D. melanogaster), nematode (C. elegans), and larva 
of greater worm moth (G. mellonella), are expected 
to solve problems of high cost and ethical issues from 
a view of animal welfare in C. neoformans infection 
models using mammals, such as mice and rats. Silkworm 
has several advantages compared to D. melanogaster 
and C. elegans: 1) bigger body size of individuals and 
lower motility, which facilitate quantitative injection of 
samples, 2) survival at 37˚C, body temperature of human, 
and 3) available for two types of injection ways, intra-
hemolymph and intra-gut. Whereas, D. melanogaster and 
C. elegans have advantages of experimental systems for 
genetics, such transgenic techniques can be applicable 
for silkworms (46-48). Using these techniques, 
understanding of host immune system in silkworm 
responding to C. neoformans infection is important issue 
in future.
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