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1. Introduction

Staphylococcus aureus is a human pathogenic bacteria 
causing various diseases. Especially, methicillin-
resistant S. aureus, MRSA, has afflicted humans from 
its emergence in the 1960's. In USA, death by MRSA is 
over 18,000/year, which is more than those by AIDS (1).  
 S. aureus produces various factors in the human 
body causing diseases, including defensive factors 
against the host immune system, adhesive factors to host 
tissues, and toxins that destroy host tissues. Expression 
of these various virulence factors is regulated by several 
virulence regulatory factors. S. aureus has 16 species of 
two-component systems that are composed of the sensor 
protein detecting environmental stimuli and the response 
regulator acting as a transcription factor (2). In these two-
component systems, association with S. aureus virulence 
has been reported in the agr system (3), which acts in 
quorum-sensing, the arlRS (4), and saeRS (5), both of 
which recognize unidentified signals, and the graSR (6,7), 
which is involved in resistance against antimicrobial 
peptides. In addition, there are many transcription 
factors including SarA family proteins that regulate 
the expression of S. aureus virulence factors (8,9). 
Identification of novel virulence factors other than these 
known virulence factors is important for understanding 

the whole picture of the regulatory network for S. aureus 
virulence factors.
 In the past, S. aureus virulence factors have been 
identified by transposon mutagenesis (10,11). Most 
transposons have a tendency to be integrated into some 
specific DNA sequence, resulting in a biased mutant 
library (11). Using a mutant library constructed with 
a popular transposon is assumed not to be effective 
to identify novel virulence factors, since it contains 
many mutants of known virulence factors. In the recent 
two decades since the completion of many genome 
projects, targeting of all genes in monocellular model 
organisms such as Escherichia coli, Bacillus subtilis, 
Saccharomyces cerevisiae, and Saccharomyces pombe 
has been accomplished to reveal the functions of all 
genes (12-15). Such reverse genetic approaches are 
effective to identify novel gene functions, because there 
is no opportunity to spend efforts to handle mutants of 
known genes. We have tried to identify novel virulence 
factors based on the S. aureus genome information (16).

2. Establishment of silkworm infection model for 
human pathogenic bacteria

To identify bacterial virulence factors, it is essential 
to evaluate the virulence of gene-knockout mutants in 
animal infection models. Since early times, mammals 
have mainly been used as infection models for S. 
aureus (10,17,18). It is difficult, however, to use large 
numbers of mammals for infection experiment because 
of cost and ethical problems. Especially, for the purpose 
of screening virulence-attenuated mutants from gene-
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knockout mutant libraries, it is needed to use animals 
other than mammals so that we can use large numbers. 
We focused our attention on silkworms, moth larva, 
Bombyx mori, a lepidopteran species. Silkworms have 
been utilized by humans to produce silk for more than 
4000 years and thus a great amount of technological 
information.about the insect has been accumulated. 
In addition, the silkworm is a solitary insect that has 
been capitalized on by humans, and has various handy 
characteristics such as, no biting and no escaping. 
Before we utilized the silkworm as an infection model 
for human pathogenic bacteria, Caenohabditis elegans, 
an invertebrate animal, has been used as an infection 
model for P. aeruginosa, a human pathogenic bacteria 
(19). Since the genetic analysis method has been 
established in C. elegans, it is useful to investigate 
host factors using C. elegans. C. elegans is, however, 
a small size animal and is not suitable for injection 
of quantitative amounts of bacterial solution and 
for quantitative evaluation of bacterial virulence. 
In contrast, the 5th-instar silkworm is around 5 cm 
long, has 700 µL of hemolymph (20), and we can 
easily inject 50 µL solution into the hemolymph by 
using a tuberculin syringe equipped with a 27 gauge 
needle (6,21). This enabled a quantitative evaluation 
of bacterial virulence as lethal dose 50% (LD50) (22). 
Furthermore, silkworms are resistant to 37˚C, the 
human body temperature, and can be used for infection 
experiments at 37˚C (23). Insects, including silkworms, 
have innate immune systems conserved with mammals. 
In addition, silkworms have a primed immune system 
that has several characteristics that resemble acquired 
immune systems in vertebrates (24,25).
 Injection of human pathogenic bacteria, such as S. 
aureus, S. pyogenes, P. aeruginosa, Vibrio cholerae, and 
enteroharnollogic Escherichia coli, killed silkworms 
(26,27). S. aureus cells injected into the silkworm 
hemolymph have proliferated in the hemolymph. 
Injection of antibiotics suppressed silkworm death 
caused by S. aureus, indicating that bacterial proliferation 
in hemolymph is required for the killing of silkworms. 
On the other hand, non-pathogenic bacteria against 
humans such as Bacillus subtilis or laboratory strains of 
Escherichia coli did not kill silkworms. These results 
indicate that virulence of bacteria against humans is 
reflected in the silkworm infection model.

3. Identification of novel virulence factors of S. aureus

S. aureus genome contains 589 gene products that are 
conserved among bacteria but the functions have not 
been revealed, which are called "conserved hypothetical 
proteins" (16). We hypothesized that these genes 
contain novel virulence genes responsible for virulence 
mechanisms conserved among bacteria. According 
to the gene-disruption method used in B. subtilis by 
single homologous recombination of a suicide vector 

into the chromosome (28), we tried to construct S. 
aureus knockout strains of these conserved hypothetical 
proteins (29). In B. subtilis, it was reported that 200 bp 
of DNA fragments targeting plasmids homologous to 
the target DNA sequence in the chromosome causes 
homologous recombination. In S. aureus, we did 
not obtain gene-disrupted strains by using a 200 bp 
homologous region in the targeting vector, but obtained 
gene-disrupted strains by using a 600 bp homologous 
region. Since the transformation frequency of the S. 
aureus RN4220 strain by plasmids is not much different 
than B. subtilis (30,31), there may be a different DNA 
recombination system between the two bacteria. We 
constructed gene-disrupted strains of around 100 genes 
by using a targeting vector harboring around a 600 
bp homologous DNA fragment to the target gene. We 
evaluated the virulence of these gene-disrupted mutants 
in the silkworm infection model and screened virulence-
attenuated mutants. We identified three genes necessary 
to kill silkworms and named them, cvfA, cvfB, and cvfC 
(conserved virulence factor) (32). These genes also 
contribute to S. aureus virulence in mice and have roles 
in producing several toxins. To know whether cvfA is 
required for virulence in other bacteria, we examined 
the cvfA function in S. pyogenes. We found that cvfA 
is required for S. pyogenes virulence in silkworms and 
mice, and is necessary for S. pyogenes production of 
several toxins including hemolysin (32). These results 
suggest that utilization of the silkworm infection model 
to evaluate bacterial virulence is a powerful tool to 
identify novel virulence factors.

4. Functions of novel virulence factors

To reveal the functions of novel virulence factors, 
we performed biochemical studies based on in silico 
information for protein domains and genetic studies 
utilizing transcriptome analysis or isolating a genetic 
suppressor. In the cvfA-disrupted mutant, 20% of all 
gene transcripts were differentially expressed compared 
with the parent strain (33). Downregulated genes in 
the cvfA mutant include hla encoding alpha hemolysin, 
sarZ encoding SarA family transcription factor, and 
agr encoding virulence regulator (34). Based on the 
information that CvfA protein has an RNA binding 
domain and metal-dependent phosphohydrolase domain, 
we found that CvfA protein has hydrolytic activity 
against 2',3'-cyclic phosphodiester bond at 3'-terminus 
of RNA and produces RNA with a 3'-phosphate (35). 
The structural alteration of 3'-terminus of RNA by 
CvfA conferred resistance against degradation by an 
exonuclease PNPase (33). The phenotype of the cvfA-
disrupted mutant with decreased hemolysin production 
was suppressed by disruption of the PNPase gene 
(33). These results suggest that modification of RNA 
3'-terminus by CvfA is important for the stability of 
RNA to regulate the expression of S. aureus virulence 
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had little report in all organisms, possibly because the 
phenotype other than virulence is difficult to find. In 
fact, there are many factors where the gene knockout 
does not show any phenotypes in model organisms such 
as E. coli (44-46). To reveal functions of such factors, 
it is important to evaluate gene-knockout phenotypes in 
more physiological conditions than the laboratory culture 
condition (Figure 1). The method to evaluate bacterial 
virulence using silkworm infection model is expected to 
be effective to identify gene functions and contribute to 
our understanding of bacterial virulence.
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Figure 1. Scheme of phenotypic characterization of gene-
knockout mutants. When a gene knockout mutant shows no 
phenotype under in vitro culture condition, more physiological 
conditions for the bacteria to be exposed should be tested. 
Silkworm infection model can be used as a host environment to 
evaluate bacterial virulence properties.
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