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Menaquinone as a potential target of antibacterial agents
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1. Menaquinone, its role and distribution

Bacteria use isoprenoid quinones such as ubiquinone 
(UQ) or menaquinone (MK) or demethylmenaquinone 
(DMK) (Figure 1) for their electron transport systems, 
which are found exclusively in cytoplasmic membranes 
(1,2). These quinones are important for the respiratory 
chain and play vital roles in cellular respiration, oxidative 
phosphorylation and formation of transmembrane 
potential in bacteria (3). Some bacteria have more than 
one of these quinones which they utilize according to 
growth conditions (4). MK, 2-methyl-3-polyprenyl-1,4-
naphthoquinone, is the sole quinone in anaerobically 
growing bacteria, mycobacteria and most of the Gram-
positive bacteria (2). MK exists in different forms 
according to the number of isoprene units which vary 
from 4 to 13 (2). In addition, some microbes require MK 
for virulence (5), regulation of certain gene expression 
such as nitrogen fixation (6), and during endospore and 
cytochrome formation (7-9).
 Mammals utilize UQ as a sole quinone for respiration 
whereas MK is utilized for blood coagulation (10), bone 
metabolism (11), cell-cycle regulation (12) etc. The 
major source of MK in humans is either the diet or gut 
flora. Although UBIAD1, an enzyme that can catalyze 
the conversion of plant phylloquinone to MK-4, has been 

reported in humans, humans are not capable of de novo 
biosynthesis of MK (13). Therefore, it is expected that 
MK and its biosynthetic pathway serve as a platform for 
selectively targeting infections caused by pathogens that 
utilize MK. In this review, we summarize antimicrobial 
agents that either inhibit MK biosynthesis or directly 
interact with MK.

2. MK biosynthesis and its inhibition by small 
molecules

MK biosynthesis has been extensively studied. MK is 
synthesized from chorismate using either a classical 
or an alternative pathway. The recent understanding 
of MK biosynthesis and its critical roles for microbial 
growth has made it a potential target of antimicrobial 
agents and inhibitors of biosynthetic enzymes have been 
identified. Most of the inhibitors are analogues of either 
the substrate or cofactors of the enzymes.
 The classical pathway involves enzymes, namely 
MenF, MenD, MenH, MenC, MenE, MenB, yfbB 
(MenI), MenA and MenG (Figure 2) (3,14-17). 
Targeting these enzymes that exist in bacteria and 
not in humans, can open up an avenue for novel 
antimicrobial agents with therapeutic potential. A 
number of inhibitors of these enzymes have already 
been identified (Figure 3). Some microorganisms 
such as Helicobacter pylori, Wolinella succinogenes, 
Campylobacter jejuni, Geobacter sulfurreducens, 
Streptomyces coelicolor, Streptomyces avermitilis, 
Thermus thermophilus, Deinococcus radiodurans and 
so on, synthesize MK using an alternative pathway 
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Figure 1. Quinones in bacterial electron transport systems

Figure 2. The classical MK biosynthesis pathway and inhibitors (SEPHCHC: 2-succinyl-5-enolpyruvyl-6-hydroxy-3- 
cyclohexene-1-carboxylate; SHCHC: 2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate; OSB: o-succinylbenzoate; 
DHNA: 1,4-dihydroxy-2-naphthoyl).

Figure 3. Inhibitors of classical MK biosynthetic pathway
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of MK biosynthesis, a MenB inhibitor 4-oxo-4-
chlorophenylbutenoyl methyl ester showed therapeutic 
effects in a mouse model (31). Of note, not all the 
inhibitors of enzymes showed antimicrobial activity 
against microorganisms (Table 1). 

3. Antibiotics interacting directly with MK

Lysocin E, a cyclic lipopeptide produced by Lysobacter 
sp. RH2180-5, directly interacts with MK and is the 
first antibiotic whose target is MK (23). It was found to 
directly bind to MK with a dissociation constant of 4.5 
μM. The striking feature that makes lysocin E unique 
from other known antibiotics is its potent bactericidal 

(18,19) that involves conversion of chorismate into 
6-amino-6-deoxyfutalosine by MqnA and MqnE. 
Another important step of the alternative pathway, 
conversion of 6-amino-6-deoxyfutalosine to de-
hypoxanthine futalosine (DHF), occurs by either a 
single step reaction catalyzed by methylthioadenosine 
nucleosidase (MTAN) as in H. pylori and C. jejuni 
or a two-step reaction catalyzed by 6-amino-6-
deoxyfutalosine deaminase (20,21) and MqnB as in 
S. coelicolor and T. thermophilus (18) (Figure 4). The 
enzymatic reaction to convert DHF to MK involves 
MqnC, MqnD and possibly MenA and MenG (22). 
In the alternative pathway, an inhibitor of MTAN has 
been reported (Figure 4). Among the known inhibitors 

Table 1. MK biosynthesis inhibitors and their action

Target enzyme

MenD

MenE

MenB

MenA

MenG

MTAN 

Inhibitors (Ref.)

Thaimine diphosphate analogues (24)
Succinyl phosphonate esters (25)

OSB analogues
      Vinyl sulphonamide analogues (26)
      Sulfonyladenosine analogues (27,28)
Acyl-adenylate analogues (29)

OSB analogues (24)
1,4-benzoxazine derivatives (30)
4-oxo-4-phenylbut-2-enoates (31)

Aurachin RE (17)
Allylaminomethanone-A (32)
Phenethylaminomethanone-A (32)
Selective mycobacterial MenA inhibitor (17)
Ro 48-8071 (33)
7-methoxy-2-naphthol derivatives (34)

Borinic esters (35)

BuT-DADMe-ImmA and analogues (36,37)

Growth inhibition

+
-

-
ND
+

+
+
+

ND
+
+
+
+
+

+
+

*ND: not determined

Figure 4. The alternative pathway for MK biosynthesis and inhibitors.
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activity. Staphylococcus aureus showed rapid loss in 
absorbance at 600 nm in the presence of lysocin E 
indicating the lysis of bacteria. Besides bacteriolysis, 
potassium ion leakage from membranes and a rapid 
loss of bacterial membrane potential in S. aureus were 
observed in the presence of lysocin E. Spontaneous 
mutants resistant to lysocin E showed decreased 
production of MK and knockout mutants of the genes 
involved in the MK biosynthetic pathway, ∆menA and 
∆menB, showed resistance to lysocin E. Moreover, 
antibacterial activity of lysocin E was decreased in the 
presence of MK, but not UQ, in the culture medium. 
This is probably due to the binding of lysocin E to the 
excessive amount of MK in the medium, leaving a 
small pool of lysocin E for binding with MK present 
in the bacterial membrane. The disruption of synthetic 
liposomes by lysocin E was dependent on the presence 
of MK. Further, ∆menA and ∆menB mutants of S. 
aureus showed repressed potassium leakage from their 
membranes. Thus, lysocin E directly targets MK, not 
the enzymes involved in MK biosynthesis. Lysocin E 
does not show antibacterial activity against Escherichia 
coli although the bacteria has MK in its cytoplasmic 
membrane. Membrane permeability might be the 
limiting factor for this Gram-negative bacteria (Figure 
5). Lysocin E targets MK in the bacterial cytoplasmic 
membrane and causes membrane disruption, ultimately 
leading to cell death. Moreover, lysocin E was non-
toxic to mice (acute toxic dose: > 400 mg/kg) and 
showed potent therapeutic activity in mice infected 
with MRSA (ED50: 0.5 mg/kg). Little acute toxicity 
and potent therapeutic activity of lysocin E in animal 
infection models suggested that lysocin E has a 
potential for clinical application.

4. Conclusion

The respiration and electron transport chains are 
important for organisms. Since, most of the Gram-
positive bacteria utilize MK and mammals utilize UQ 
as the sole cofactor in their electron transport system, 
inhibitors of MK are expected to show selective toxicity 
towards these bacteria. Many inhibitors of the enzymes 
of MK biosynthetic pathway have been developed 
and recent advances in the understanding of MK 
biosynthesis have attracted attention for MK as a target 
of antibacterial agents. Moreover, the discovery of MK 
targeting antibiotic, lysocin E, is a breakthrough in this 
field broadening the importance of MK as a potential 
target of antibacterial agents with therapeutic potential 
for the treatment of infectious diseases.
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