A simple artificial diet available for research of silkworm disease models

Atmika Paudel¹, Suresh Panthee¹, Hiroshi Hamamoto¹, Kazuhisa Sekimizu¹,²,*

¹Teikyo University Institute of Medical Mycology, Tokyo, Japan; ²Genome Pharmaceuticals Institute Co., Ltd., Tokyo, Japan.

SUMMARY This study was performed with the aim of making a very simple recipe of silkworm diet for research purposes, especially screening of drug candidates. We prepared a diet containing mulberry leaves powder and soybean flour at different ratios, fed them to fifth instar silkworm larvae, and observed their growth. We selected the diet with 1:1 ratio of mulberry powder and soybean flour, named MS-11, and used for further experiments. MS-11 diet was available for oral administration of drugs in silkworm hyperglycemic model and infection model. The availability of a simple artificial diet for experiments that require feeding silkworms will enhance the use of silkworms for biological, biotechnological, and pharmacological researches.

Keywords Silkworm, artificial diet, mulberry, research

1. Introduction

Silkworm (Bombyx mori) is a lepidopteran invertebrate that has been domesticated for silk production with a long history of breeding (¹). Apart from using them for silk, silkworm larvae have gained attention as animal model of various human diseases. The basic common pathways shared by silkworms with mammals, their body features and size and ease in handling, and less ethical concerns make silkworms appropriate for research purposes before moving on to higher animal models (²).

The fact that human pathogenic microorganisms kill silkworms and clinically used antibiotics cure those infections with comparable effective dose fifty (ED₅₀) values (³) to those of mammals make silkworm suitable for using as an infection model. The activation of innate immunity and response towards infection (⁴) makes them suitable for the study of host-pathogen interactions. Further, similarity in pharmacokinetics (⁵,⁶) and toxicities (⁷) of compounds make them more reliable and appropriate for using them to identify lead molecules that have therapeutic effect and a potential to further towards clinical applications.

Silkworms have been applied for the screening of novel antimicrobial agents with novel mechanism of actions from natural product (⁸) and chemical libraries (⁹-¹¹), for screening of novel virulence factors of pathogenic microorganisms (¹²,¹³). The elevation of glucose in silkworm blood after ingestion of glucose and sucrose diet and lowering of this level by clinically used anti-diabetic drugs (¹⁴) makes them suitable for screening of compounds that may be applied as anti-diabetes agents. The fate of compounds after ingestion such as bioavailability, absorption, distribution, metabolism, and excretion can be studied as silkworms have basic metabolic pathway common to mammals with involvement of cytochrome P450 enzyme for metabolism (⁵). On the basis of pharmacokinetic parameters, therapeutic activities of compounds with similar in vitro activities could be differentiated by evaluation with silkworms (¹¹). Therefore, silkworm larvae are appropriate for pharmacological researches.

Usually, silkworms are reared on mulberry leaves as they have a selective preference over it. As mulberry leaves are not available all year round, several artificial diets for silkworm rearing are commercially available. There have been several studies to establish artificial diets for silkworms focusing on improving the silk production (¹⁵-¹⁷). However, diets that can be easily prepared and suitable for establishing silkworms as disease models are lacking. In our laboratory, we have been routinely using artificial diet for research purposes. The comparison of the artificial diet with mulberry leaves on infection model of silkworm showed that the killing ability of a Gram-positive bacteria, Staphylococcus aureus, was same regardless of the diet fed (¹⁸).

Even when mulberry leaves are available for silkworm rearing, some disease models require the use of artificial diets, especially in conditions where silkworms must be fed with substances under study.
For instance, when screening for blood glucose level lowering agents, silkworms should be fed high glucose/sucrose diet, when determining oral toxicity of compounds, the compounds must be fed to silkworms. In such experiments, it is necessary that silkworms feed on the substances and this in only possible when artificial diet is available.

In this study, we established a simple artificial diet, MS-11, for pharmacological and biological experiments requiring feeding silkworms. The establishment of such diet will help researchers around the world to prepare their own artificial diet in the laboratories and perform desired researches. This will expand the use of silkworms in research which is limited to the laboratories where rearing silkworms in artificial diets is a common practice.

2. Materials and Methods

2.1. Preparation of artificial diet

Artificial diets were prepared by mixing five different proportions of mulberry leaves powder (Healthy Company, Japan) and soybean flour, and agar (Nacalai, Japan) in 100 mL water (Figure 1A). They were autoclaved at 121°C for 15 minutes, mixed and kept at 4°C for use. Ready to use artificial diet, Silkmate 2S diet, was purchased from Nosan Corporation, Japan.

2.2. Rearing of silkworms

Silkworms were reared according to previously described methods (8,10). Briefly, hatched larvae from silkworm eggs (Hu·Yo × Tukuba·Ne; Ehime Sanshu), were fed artificial diet, SilkMate 2S (Nihon Nosan Co., Ltd., Kanagawa, Japan) until 4th or 5th instar larvae as mentioned. Silkworms were maintained at 27°C all the time.

2.3. Measurement of glucose level in silkworm hemolymph

The 4th instar larvae were fed Silkmate diet or MS-11 diet until they become 5th instar larvae. The 5th instar larvae weighing between 0.9 to 1.1 g were starved overnight. Next day, the larvae were fed respective diets with or without 10% sucrose (w/w) (Fujifilm wako, Japan). Acarbose (80 mg/g, LKT laboratories Inc., USA), a known clinically used antidiabetic drug, was mixed with the 10% sucrose containing diets as a positive control. After 1 h of feeding, hemolymph was collected by cutting the abdominal prolegs, and glucose level was measured using a glucometer (Accu-Chek: Roche, Basel, Switzerland).

2.4. Determination of oral therapeutic activity of antibiotics

The 5th instar silkworm larvae were fed overnight with MS-11 diet. Staphylococcus aureus MSSA1 was grown in sheep blood agar plate at 37°C overnight, inoculated in tryptic soy broth, and grown at 37°C with shaking at 200 rpm for 18 hours. The full growth was 10-fold diluted with 0.9% saline, 50 µL of which was injected into the hemolymph of each silkworm larva. The infected larvae were fed with MS-11 diet containing various concentrations of chloramphenicol or tetracycline. The survival was observed and recorded for each dose when all the silkworms fed with no antibiotic diet died. ED₅₀ values were calculated by logistic regression analysis using the logit link function.

3. Results

3.1. Growth of silkworms depends upon the component of artificial diet

We prepared five different artificial diets with varying proportions of mulberry leaves powder and soybean flour (Figure 1A). We fed 1 g of these diets to each of the 5th instar first day silkworm larvae and observed their growth. We found that the larvae preferred the diets containing mulberry leaves powder. Among the

Figure 1. Silkworm artificial diet and growth of silkworm larvae. (A) Composition of the artificial diets used in this study. Diets were prepared as mentioned in Materials and Methods section. (B) Growth of the artificial diet fed silkworm larvae. One gram of each diet was fed per larva per day and remaining diets were removed each day. Growth of each larva was recorded each day for 8 days and data is shown as mean ± SEM.
We counted the number of the survival of silkworms and calculated the ED$_{50}$ values of the antibiotics. We found that the ED$_{50}$ values of the antibiotics per oral route to be consistent with those previously obtained using the Silkmate diet (Table 1). These results suggest that MS-11 diet prepared in this study is available for determining therapeutic activities of orally effective antibiotics.

4. Discussion

Several studies have been performed to assess the components essential for the growth of silkworm and for optimum silk production by using artificial diet (19). Comparison between natural and artificial diets fed silkworms have also been done that analyzed gut microbiota (20) as well as proteomic (21) and metabolomic (22) profiles. Most of the studies on artificial diet have mainly focused on silk production, so far. In the recent scenario of growing interest of using silkworms as drug discovery models, artificial diet that is simple, can be widely used, and applicable for research purposes is desirable.

Silkworms sense the odor of mulberry and are attracted by β-γ-hexenol and α-β-hexenal components in the mulberry (23), which is sensed by GR66 gene encoding a putative bitter gustatory receptor (24) that are responsible for the mulberry-specific feeding preference of the silkworms. As expected, we found that the larvae preferred diet that contained mulberry powder. Of note, the MS-11 diet is for research and not for silkworm rearing purpose. Silkworms can be reared in mulberry leaves and MS-11 diet can then be used for subsequent feeding experiments. MS-11 diet is simple with only two major ingredients and can be easily prepared in individual laboratories. Besides, this composition ensures that there is less interference of the diet components to the experiments. The diet is applicable to experiments that require feeding compounds/extracts to silkworms to assess various biological activities through oral route of administration. Here we showed two such examples; assessing blood glucose-lowering activity and oral antimicrobial activity of clinically used drugs. MS-11 diet can be utilized for other similar experiments including but not limited to assessing oral toxicity, bioavailability, absorption, digestion/metabolism of compounds, and effect of compounds including food.
products, probiotics in immunity, and application in food/nutrition science.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number JP19K16653 (Grant-in-Aid for Early-Career Scientists) to AP, JSPS KAKENHI Grant Number JP19K07140 (Grant-in-Aid for scientific research) to HH and TBRF fellowship to SP.

References

20. Dong HL, Zhang SX, Chen ZH, Tao H, Li X, Qiu JF, Cui WZ, Sima YH, Cui WZ, Xu SQ. Differences in gut microbiota between silkworms (Bombyx mori) reared on fresh mulberry (Morus alba var. maculaulis) leaves or an artificial diet. RSC Adv. 2018; 8:26188-26200.