Evolving immune evasion and transmissibility of SARS-CoV-2: The emergence of JN.1 variant and its global impact

Guanyong Ou1,2,§, Yang Yang1,2,§, Shengjie Zhang1,2, Shiyu Niu1,2, Qingxian Cai1,2, Yingxia Liu1,2,*, Hongzhou Lu1,2,*

1 Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, Guangdong, China; 2 National Clinical Research Center for infectious disease, Shenzhen, Guangdong, China.

SUMMARY
The continuous evolution of SARS-CoV-2 variants constitutes a significant impediment to the public health. The World Health Organization (WHO) has designated the SARS-CoV-2 variant JN.1, which has evolved from its progenitor BA.2.86, as a Variant of Interest (VOI) in light of its enhanced immune evasion and transmissibility. The proliferating dissemination of JN.1 globally accentuates its competitive superiority and the potential to instigate fresh surges of infection, notably among cohorts previously infected by antecedent variants. Notably, prevailing evidence does not corroborate an increase in pathogenicity associated with JN.1, and antiviral agents retain their antiviral activity against both BA.2.86 and JN.1. The sustained effectiveness of antiviral agents offers a beacon of hope. Nonetheless, the variant's adeptness at eluding the immunoprotective effects conferred by extant vaccines highlights the imperative for the development of more effective vaccines and therapeutic approaches. Overall, the distinct evolutionary trajectories of BA.2.86 and JN.1 underscore the necessity for ongoing surveillance and scholarly inquiry to elucidate their implications for the pandemic's evolution, which requires the international communities to foster collaboration through the sharing of data, exchange of insights, and collective scientific endeavors.

Keywords
SARS-CoV-2 variants, JN.1, immune evasion, vaccine refinement, global public health
The World Health Organization (WHO) has subsequently classified JN.1 as a Variant of Interest (VOI), positioning it within the second-tier category of its variant monitoring framework (7). The ascendance of JN.1 correlates with increased detections in wastewater surveillance and a surge in hospital admissions within regions such as the Netherlands and Singapore (8). Numerous studies have been conducted to track the proliferation of SARS-CoV-2 through the analysis of regional wastewater samples (9-11). A report published by the Centers for Disease Control and Prevention (CDC) on January 5 highlighted a notable intensification in viral activity, particularly evidenced by a 27% augmentation in wastewater viral loads compared to the preceding year (10). Furthermore, subsequent to its initial identification in wastewater samples in Germany, JN.1 has rapidly ascended to a position of major endemic prevalence (11). As of January 20, 2024, a total of 78,178 JN.1 and 95,183 BA.2.86 related sequences were detected globally (Figure 2A and 2B), according to the data sourced from the cov-spectrum database (https://cov-spectrum.org) (12). Notably, JN.1 accounted for 88.6% of these sequences, and demonstrated a persistent upward trajectory with rapid spread to multiple regions around the world (Figure 2C). To date, there is no empirical evidence to suggest that the JN.1 variant is implicated in exacerbating clinical symptoms or augmenting pathogenicity (13).

The clinical manifestations associated with JN.1 infection align closely with those observed in preceding Omicron variants, predominantly presenting as fever, cough, headache, and in many instances, asymptomatic or mild conditions (14). Moreover, one recent study has elucidated that antiviral agents, including paxlovid, remdesivir, and molnupiravir, retain their antiviral activity against both BA.2.86 and JN.1 (15).

In light of this waning SARS-CoV-2 specific immunity from infection and vaccination, particularly pronounced among the elderly demographic, the evaluation of booster vaccination strategies has been undertaken (2,8). Bivalent booster vaccinations have been shown to transiently augment neutralization titers, while their immunogenic potency also diminishes within a six-month timeframe (8). Moreover, with the rapid evolution of SARS-CoV-2 during the continuous spread, researches highlight the urgent need to update vaccine formulations in response to emerging SARS-CoV-2 sub-variants.
future vaccine updates should be advocated, and it is recommended that individuals lacking prior Omicron exposure should receive two updated booster doses to enhance protection. Vaccines recently updated to target variants such as XBB.1.5 have demonstrated cross-reactivity with JN.1, intimating their prospective efficacy against emerging variants (8).

The distinct evolutionary trajectories of BA.2.86 and JN.1 underscore the necessity for ongoing surveillance and scholarly inquiry to elucidate their implications for the pandemic's evolution. The propensity of JN.1 to evade immune responses presents formidable challenges to extant vaccines and therapeutic antibodies, highlighting the imperative for the development of more
effective vaccines and therapeutic approaches. Moreover, the escalating prevalence of JN.1 may be attributable to factors beyond mere escape from neutralization, which merits comprehensive investigation. Therefore, in the face of persistent mutations and the proliferation of SARS-CoV-2, it is imperative for international communities to foster collaboration through the sharing of data, exchange of insights, and collective scientific endeavors.

Funding: Shenzhen Science and Technology Program No. JSGG20220226090203006 and JSGG202022608580001.

Conflict of Interest: The authors have no conflicts of interest to disclose.

References

10. Rubin R. As COVID-19 cases surge, here's what to know about JN.1, the latest SARS-CoV-2 "Variant of Interest". JAMA. 2024; 331:382-383.

Received February 8, 2024; Accepted February 18, 2024.

*These authors contributed equally to this work.

*Address correspondence to:
Hongzhou Lu and Yingxia Liu, Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Clinical Research Center for Infectious disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
E-mail: luhongzhou@szsyz.sustech.edu.cn (HZ Lu); yingxialiu@hotmail.com (YX Liu)

Released online in J-STAGE as advance publication February 22, 2024.