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A pandemic known as anti-microbial resistance (AMR) poses a challenge to contemporary medicine. 
To stop AMR's rise and quick worldwide spread, urgent multisectoral intervention is needed. This 
review will provide insight on new and developing treatment approaches for AMR. Future therapy 
options may be made possible by the development of novel drugs that make use of developments 
in "omics" technology, artificial intelligence, and machine learning. Vaccines, immunoconjugates, 
antimicrobial peptides, monoclonal antibodies, and nanoparticles may also be intriguing options for 
treating AMR in the future. Combination therapy may potentially prove to be a successful strategy for 
combating AMR. To lessen the impact of AMR, ideas like drug repurposing, antibiotic stewardship, 
and the one health approach may be helpful.

1. Introduction

Antibiotics, widely used to treat diseases in both humans 
and animals, are hailed as the greatest medical discovery 
of the 20th century. Global antibiotic usage increased by 
46% between 2000 and 2018, according to a new analysis 
that provided longitudinal estimates for human antibiotic 
consumption across 204 nations (1). However, rising 
levels of antimicrobial resistance (AMR) globally pose 
a danger to the beneficial health effects of antibiotics. 
AMR has become one of the main public health issues 
of the twenty-first century, posing a threat to the 
efficient prevention and treatment of a growing variety 
of microbial illnesses (2). The relationship between 
spread of AMR and antibiotic use is well documented 
(3). Additionally, it has been predicted that AMR would 
be the primary cause of death worldwide by 2050 due to 
the declining effectiveness of existing antibiotics and the 
dearth of novel antibiotics available on the market (4). 
It is concerning to note that AMR caused 1.27 million 
fatalities globally in 2019 alone, more than HIV and 
malaria combined (1). In addition to its direct effects on 
human health, AMR is linked to a substantial worldwide 
financial burden because of rising hospitalization and 
medication-related healthcare expenses (5).
 Recognizing the seriousness of the situation, the 
World Health Organization (WHO) drafted the Global 
Action Plan (GAP) on AMR, which was approved at 

the 68th World Health Assembly in May 2015 (6,7). 
This was followed by National action plans (NAPs) by 
many countries. The World Health Assembly recently 
called on member states to support and encourage basic, 
applied, and implementation research on infection 
prevention and control, diagnostic tools, vaccines, 
therapeutics, and antimicrobial stewardship through 
cooperation with academia, the private sector, and civil 
society in its 77th resolution on accelerating national 
and global responses to AMR (8,9). Furthermore, a key 
dimension to overcome AMR is ensuring that the world 
has a sustainable supply of antimicrobials. To this end, 
there is an urgent need to replace drugs rendered useless 
by the emergence of resistance by new therapeutics. 
This review will focus on new and emerging therapeutic 
options to combat AMR.

2. AMR mechanisms

Bacteria can develop acquired or innate antibiotic 
resistance (10). The intrinsic resistance characteristic, 
which is uniformly shared within a bacterial species, is 
unrelated to horizontal gene transfer and unaffected by 
prior antibiotic exposure (11). Intrinsic resistance might 
help bacteria survive an antibiotic through evolution 
(like changing their structure or components). Intrinsic 
resistance, for instance, might result from the natural 
activity of efflux pumps and decreased permeability 
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of the outer membrane, such as the lipopolysaccharide 
(LPS) in gram-negative bacteria (11,12). Acquisition of 
genetic material through horizontal gene transfer (HGT) 
including transformation, transposition, and conjugation 
or a new genetic mutation can lead to acquired resistance 
(11,13). AMR mechanisms include limiting uptake of 
a drug, modifying a drug target, inactivating a drug and 
active drug efflux (11,14). Figure 1 represents some 
AMR mechanisms and some novel and emerging options 
to tackle AMR.
 Antibiotic uptake may be hampered by modifications 
in the permeability of the outer membrane or by the 
presence of porins, a subclass of transmembrane pore-
forming outer membrane proteins (OMPs) (11,14). 
Drug uptake may be restricted by a reduction in the 
number of porins or mutations that alter the porin 
channel's selectivity (11). AMR, especially carbapenem 
resistance, is significantly influenced by outer-membrane 
remodeling, a key characteristic of many bacterial 
pathogens (15). Recently, the five-protein β-barrel 
assembly machine (BAM) complex, which is essential 
for the synthesis of outer membrane proteins in gram-
negative bacteria, has become a viable target for drug 
development (16,17).
 The antibiotic's low potency may result from changes 
to the drug target that prevent it from binding (11,13). 
Antimicrobial treatments may target several different 
parts of the bacterial cell, and the bacteria may alter 

many of these targets to make them resistant to the 
medications. β-lactam antibiotics target penicillin-binding 
proteins (PBPs), which are necessary for the bacterial 
cell wall to form (18). The quantity of drug binding to 
that target will be affected by an increase in PBPs with 
reduced drug binding ability or a decrease in PBPs with 
normal drug binding (11). Compared to sensitive strains, 
AMR strains frequently feature chimeric high molecular 
mass PBPs (HMM PBPs) (19).  The analysis of 26,465 
S. pyogenes genome sequences revealed that amino acid 
alterations in PBP1a, 1b, 2a, and 2x resulted in decreased 
susceptibility to β-lactams (19,20). The vanA gene 
cluster on the transposon Tn1546, which is commonly 
found on plasmids, can give vancomycin resistance by 
altering the structure of peptidoglycan precursors, which 
reduces vancomycin's binding capacity (21). A 44-bp 
deletion in the vanHAX promoter region that permits the 
production of vanHAX was linked to an enhanced vanA 
plasmid copy number in a study on vancomycin variable 
enterococci with resistant phenotype (22).
 Drug inactivation leading to AMR can be achieved 
by actual degradation of the drug, or by transfer of a 
chemical group to the drug (11). Modified existing 
bacterial enzyme can interact with an antibiotic making 
it inactive towards bacteria (14). The common structural 
element of all β-lactam antibiotics, including penicillins, 
cephalosporins, carbapenems, and monobactams, is the 
amide bond in the β-lactam ring, which is hydrolyzed by 
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Figure 1. AMR mechanisms and some novel and emerging options to tackle AMR.
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emerging options include monoclonal antibodies 
(mAbs), antimicrobial peptides (AMPs), novel antibiotic 
compounds, phage therapy, vaccines, combination drug 
therapy and nanoparticles to name a few. Many mAbs 
against bacteria have entered clinical trial but only few 
have succeeded (28,29). Obiltoxaximab and raxibacumab 
against Bacillus anthracis, actoxumab and bezlotoxumab 
against Clostridium difficile ,  edobacumab and 
nebacumab against Escherichia coli, aurograb against 
Staphylococcus aureus are few important examples 
(28,29). Bezlotoxumab has recently obtained FDA 
approval for preventing recurrent Clostridium difficile 
infections, while obiltoxaximab and raxibacumab for 
the treatment of inhalational anthrax (30,31). Being 
distinct from conventional small-molecule antibiotics, 
mechanisms of action of mAbs is less prone to drug 
resistance. AMPs are peptide sequences linked to 
biological action that typically contain 10–60 amino acid 
residues and lack any particular consensus amino acid 
patterns (32,33). Dalbavancin, daptomycin, telavancin, 
telaprevir, bacitracin and polymyxins are some examples 
of AMP approved by FDA (34). Phage therapy, an 
alternative therapy to combat bacterial infections has 
also been extensively investigated (35). Phage therapy 
registered clinical trials seek to exploit the bacteriocidal 
activity of lytic phages. Furthermore, focus on the ability 
of phages to disrupt biofilms is also under consideration 
(36). List of some novel and emerging therapeutics to 
treat AMR is given in Table 1.
 Zolif lodacin,  a  compound based on a  new 
benzisoxazole scaffold containing the pyrimidinetrione 
spirocyclic pharmacophore is in phase III trial since 
2019 for the treatment of multidrug-resistant N. 
gonorrhoeae (37,38). Ridinilazole, a bis-benzimidazoles 
class of synthetic antibiotic has been reported to have 
rapid bactericidal activity and is in phase II trial for 
effective clinical response in the eradication of C. 
difficile compared to vancomycin (39). Recently, a 
new potential combination therapy to combat AMR 
by targeting two key bacterial enzymes involved in 
resistance was published (40). Triple combination 
of meropenem (MEM), a novel metallo-β-lactamase 
(MBL) inhibitor (indole-2-carboxylate 58 (InC58), and 
a serine-β-lactamase (SBL) inhibitor (avibactam (AVI) 
showed a much wider spectrum of activity against 
different carbapenemase-producing bacteria, revealing 
a new strategy to combat β-lactamase-mediated AMR 
(40). Ceftolozane-tazobactam (C-T) and ceftazidime-
avibactam (CAZ-AVI) are two novel antimicrobials that 
retain activity against resistant Pseudomonas aeruginosa 
(41-43).
 Carbon-based nanoparticles (NPs) including carbon 
quantum dots (CDots), nanotubes and 2-D materials, 
including graphene have been proven to be effective 
with their bactericidal action against Klebsiella 
oxytoca, Pseudomonas aeruginosa and Staphylococcus 
epidermidis (44). 2,2-(ethylenedioxy)bis(ethylamine) 

β-lactamases, a superfamily of hydrolyzing enzymes with 
over 2,000 members, rendering them ineffective (23). 
Aminoglycoside-modifying enzymes (AMEs) catalyze 
enzymatic modification of aminoglycoside antibiotics 
leading to their inactivation.  AME-encoding genes were 
found in 48 out of 619 clinical isolates of P. aeruginosa 
in a recent study using bioinformatics analysis. The most 
prevalent of these genes were ant(2′)-Ia and aac(6′)-
Ib3, which are linked to tobramcyin and gentamicin 
resistance (24). Macrolide phosphotransferases (MPHs) 
are enzymes that add a phosphate to the 2'-OH group 
of macrolides thereby modifying and inactivating them 
(25). Macrolides interact with 23S rRNA at the A2058 
residue within the nascent peptide exit tunnel around the 
peptidyl transferase center to inhibit protein synthesis 
(25). The substitution of 23s rRNA in the A2058 or 
A2059 positions leads to macrolide resistance in both 
Enterobacteriaceae and gram-positive isolates alike (26).
 Efflux pumps decrease the intracellular concentration 
of drugs and function at the frontline to protect bacteria 
against antimicrobials (27). Efflux transporters are 
mainly categorized five superfamilies: ATP-Binding 
Cassette (ABC) superfamily, Multidrug and Toxic 
Compound Extrusion (MATE) superfamily, Major 
Facilitator Superfamily (MFS), Resistance Nodulation 
and Cell Division (RND) superfamily, and Small 
Multidrug Resistance (SMR) superfamily (27). The 
tripartite complex MacAB-TolC efflux pump, an ABC-
type transporter that has been extensively explored in 
gram-negative bacteria, actively extrudes macrolides 
and polypeptide virulence factors that are driven by 
the ATPase MacB (27). The efflux of cationic dyes, 
including the efflux of fluoroquinolone medications, is 
facilitated by the MATE efflux family, which uses the 
Na+ gradient as its energy source (27).  In gram-positive 
microorganism, MFS family is the largest characterized 
family of transporters with 12 or 14 transmembrane 
segments (27). MFS pumps like Lde and NorA in Listeria 
monocytogenes and NorA in Staphylococcus aureus 
extrude hydrophilic fluoroquinolones like norfloxacin 
and ciprofloxacin (27). In many gram negative bacteria, 
substrate efflux via substrate/H+ antiport mechanism is 
catalyzed by RND efflux family members (27). Pumps 
like MexAB-OprM in P. aeruginosa, AcrAB-TolC in 
E. coli, OqxAB in K. pneumoniae and AdeABC in A. 
baumannii are some examples of RND superfamily 
pumps (27). Energized by the proton-motive force (H+), 
SMR efflux family are hydrophobic, efflux mainly 
lipophilic cations having a narrow substrate range (27). 
The SMR superfamily member EmrE protein, which is 
found in E. coli and P. aeruginosa, detects and facilitates 
the extrusion of harmful poly-aromatic chemicals (27).

3. Novel and emerging therapeutics for AMR

In the light of above information, it is imperative to 
look for new therapeutics to combat AMR. Some 
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carbon quantum dots (EDA-CDots) were reported to be 
effective and treatment at 0.1 mg/mL for 1 h reduced 
3.26 logs of viable cells (44). PEI600-CDots and PEI1200-
CDots treatment at 0.1 mg/mL for 1 h reduced > 7 logs 
and 1.82 logs viable cells, respectively (45). Potential 
effectiveness of CuO NPs against biofilms has been 
recently demonstrated in many microorganism groups 
(44). Recently, TiO2 NPs were reported to be effective 
against MRSA (46). After 12 hours of incubation, it 
was shown that the most effective dose was 2 mM TiO2 
nanoparticles, however the combination of erythromycin 
and 3 mM TiO2 nanoparticles was more efficient and 
considerably reduced the MIC of erythromycin to 2–16 
mg/L (46). List of some novel and emerging therapeutics 
to treat AMR is given in Table 1 and Table 2.
 Combination therapy, the concurrent use of 
multiple antimicrobials in clinical practice has been 
successfully used to prevent resistance evolving during 
the treatment of diseases like tuberculosis and HIV 

(64,65).  In a report on laboratory evolution of E. coli, 
three pairwise combinations of antibiotics that included 
amikacin, chloramphenicol and enoxacin significantly 
suppressed the resistance acquisition (66). Zheng et al. 
(2018) reported that vancomycin in combination with 
beta lactams: piperacillin-tazobactam, cefazolin, and 
meropenem effectively prevented the development of 
vancomycin intermediate S. aureus (67).
 Four vaccine candidates in phase 3 clinical trials 
against M. tuberculosis were recently identified in a 
paper that offered insight into mapping vaccination 
options against pathogens prioritized owing to AMR. 
Phase 3 trials for VPM1002, GamTBvac, MTBVAC, 
and Immuvac are presently underway. Immuvac 
is a therapeutic vaccine that employs a heat-killed 
Mycobacterium indicus pranii and is undergoing a 
phase 3 trial in India; MTBVAC is a live attenuated M. 
tuberculosis candidate; and VPM1002 is a preventive 
recombinant BCG vaccine (68). ExPEC9V, a nine-

Table 1. List of some novel AMPs, mAbs and antibiotics (approved/clinical trials) for AMR

Drug Name

Dalbavancin
Raxibacumab
Obiltoxaximab
Bezlotoxumab
Polymyxins

TNP-2092
Edobacumab
Tefibazumab
Aurograb
Oritavancin
Telavancin
Afabicin
Benapenem
Cefiderocol
Zoliflodacin
Levonadifloxacin
Sulopenem
Gepotidacin
Ceftobiprole
Imipenem
Pretomanid
Lefamulin
Cefilavancin
LTX-109
Surotomycin
Murepavadin
Opebacan
Plazomicin
Sarecycline
Eravacycline
XOMA-629
Novarifyn
AMP PL-18
Omiganan
Salvecin
MEDI4893
MAB-T88
Brilacidin

Type

AMP†

mAb*

mAb
mAb
AMP

Antibiotic
mAb
mAb
mAb
AMP
AMP
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
Antibiotic
AMP
AMP
AMP
AMP
Antibiotic
Antibiotic
Antibiotic
AMP
AMP
AMP
AMP
mAb
mAb
mAb
AMP

†Anti-Microbial Peptide; *Monoclonal Antibody.

Bacterial Species/Clinical Target

Methicillin-resistant Staphylococcus aureus
Bacillus anthracis
Bacillus anthracis
Clostridium difficile
Drug resistant Enterobacterales, Acinetobacter baumannii and 
Pseudomonas aeruginosa
Bacterial skin infection
Escherichia coli
Staphylococcus aureus
Staphylococcus aureus
Gram-positive bacteria
Staphylococcus aureus and other gram-positive bacteria
Bacterial skin infection
Anti-Bacterial
Gram-negative bacteria
Gram-negative bacteria
MRSA
Anti-Bacterial
Gram-negative bacteria
MRSA
Anti-Bacterial
Anti-Bacterial
Anti-Bacterial
Bacterial skin infections
MRSA
Clostridium difficile
P. aeruginosa
Meningococcal infections
Enterobacteriaceae infections
Anti-Bacterial
Anti-Bacterial
Endotoxins of gram-negative bacteria
Bacterial infection
Bacterial vaginosis
Staphylococcus species
Staphylococcus aureus
Staphylococcus aureus
Escherichia coli
Broad spectrum antibacterial therapy

Phase

FDA Approved
FDA Approved
FDA Approved
FDA Approved
FDA Approved

Phase 2
Phase 3
Phase 2
Phase 3
FDA Approved
FDA Approved
Phase 2
Phase 2
FDA Approved
Phase 3
Phase 3
Phase 3
Phase 3
Phase 3
FDA Approved
FDA Approved
FDA Approved
Phase 3
Phase 2
Phase 3
Phase 3
Phase 2
FDA Approved
FDA Approved
FDA Approved
Phase 2
Phase 1
Phase 1
Phase 3
Phase 2
Phase 2
Phase 2
Phase 2

Reference

(47,48,49,51)
(51,52,53,54)

(51,52,53)
(51,52,54)

(55)

(60)
(52)
(52)
(52)

(52, 56,57)
(52, 58)
(59,60)

(60)
(59,60)
(59,60)

(60)
(60)

(59,60)
(61)
(62)
(62)
(62)
(62)
(63)
(63)
(63)
(63)
(62)
(62)
(62)
(63)
(63)
(63)
(63)
(52)
(52)
(52)
(63)
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valent-O-polysaccharide conjugate vaccine is currently in 
a phase 3 clinical trial against extraintestinal pathogenic 
E. coli (68). PF-06425090 is a recombinant toxin 
vaccine targeting C. difficile, consisting of genetically 
and chemically detoxified TcdA and TcdB toxins (68).  
For Klebsiella pneumoniae, a tetravalent bioconjugated 
vaccine candidate, KlebV4, is being assessed with and 
without the AS03 adjuvant in a phase 1/2 trial (68). 
Besides these, next generation approach, CRISPR-Cas9 
antimicrobials, nanoparticle based strategies, artificial 
intelligence (AI) approaches also offer as potential 
options to tackle AMR in future (69-71).

4. Conclusions

AMR's emergence poses a serious threat to global public 
health, requiring the creation of novel antibiotics and 
multifaceted approaches to effectively combat it. An 
attempt was made to educate researchers and physicians 
about new and developing treatments for AMR in this 
review article. While creating novel antimicrobials 
is a crucial part of treating AMR, other viable future 
solutions to address AMR include enhancing surveillance 
systems, repurposing current medications, antibiotic 
stewardship, and one health approach (72). Additionally, 
new synergistic drug interactions to combat AMR can be 
found with the aid of machine learning (ML) algorithms 
that are being used to predict and create innovative 
treatments (73). By using AI and ML, it is possible 

to take use of the potential to create new medicine 
combinations to control the growth of AMR. Because 
AMR affects people all around the world and crosses 
national borders, international cooperation is essential 
to combating its worldwide scope. Governments, 
international organizations, and stakeholders must 
encourage worldwide collaboration on AMR in order 
to share best practices, harmonize regulations, and 
coordinate efforts to successfully combat AMR.
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