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ABSTRACT: 15-Alkylidene andrographolide 
derivatives were specific alpha-glucosidase inhibitors. 
Semi-synthetic studies of these derivatives led to new 
alpha-glucosidase inhibitors. Their alpha-glucosidase 
inhibitory activity was evaluated. Bioactivity 
results indicated that most of the derivatives were 
excellent alpha-glucosidase inhibitors. Among them, 
6c displayed the best alpha-glucosidase inhibitory 
bioactivity with an IC50 value of 8.3 µM.
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Introduction

Intense interest in glucosidase inhibitors in chemistry, 
biochemistry, and pharmacology has led to many 
types of natural and synthetic inhibitors, which aid in 
both unraveling the mechanism of glucosidase action 
and development of potential pharmaceuticals such 
as antitumour agents (1-3), antiviral agents (4,5), 
antidiabetics (6-9), and immunoregulatory agents (10). 
Various types of inhibitors have also been designed 
based on structures that resemble the glycosylcations in 
a transition state of hydrolysis by glucosidase (11).
 The plant Andrographis paniculata (12,13) and its 
constituent andrographolide (3) are used extensively in 
traditional Chinese medicine (14,15). Extracts of the 
plant and the constituents are reported to exhibit a wide 
spectrum of biological activities including antibacterial 
(16,17), anti-inflammatory (18,19), antimalarial 
(20,21), immunological (22,23), hepatoprotective (24), 
and antitumor (25) properties. In recent years, the 
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antidiabetic activity of the plant has also attracted some 
researchers’ attention (26-30).
 In the course of the current authors’ study of 
glucosidase inhibi tors , some andrographolide 
derivatives have been proven to be potent and specific 
α-glucosidase inhibitors (31). Previous results 
indicated that (a) the γ-alkylidene butenolide moiety of 
andrographolide derivatives and (b) the aromatic group 
at 3,19-hydroxyls favored α-glucosidase inhibitory 
activity while (c) the epoxidation of double bonds (Δ8(17)) 
hampered α-glucosidase inhibitory activity (31).
 Among the two series of 15-alkylidene derivatives 
cited in previous work, compounds 1 and 2 were the 
best α-glucosidase inhibitors with an IC50 value of 16 
μM and 6 μM, respectively (Figure 1) (32).

 Th i s pape r focuses on syn thes i z ing more 
15-alkyl idene andrographolide analogues and 
investigating the contribution of ketal to inhibitory 
activity. Hence, a new series of derivatives were 
designed and synthesized based on the 15-aklylidene 
andrographolide derivatives concerned instead of the 
compound 1, which displayed excellent bioactivity 
(IC50, 16 μM).

Materials and Methods
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Figure 1. α-glucosidase inhibitors with an IC50 value of 16 μM 
and 6 μM, respectively.
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General methods

Melting points were determined on a Beijing Keyi 
XT5 apparatus and are uncorrected. IR spectra were 
recorded as KBr pellets on a Thermo Nicolet (IR200) 
Spectrometer. 1H- and 13C-NMR spectra were recorded 
on a Brüker DPX-400 spectrometer at 400 and 100MHz 
with TMS as the internal standard. Mass spectra were 
taken with a Waters Q-Tof micro mass spectrometer. 
The absorbance at 405 nm was measured with a 
PowerWaveX Microplate Scanning Spectrophotometer 
(BIO-TEK INSTRUMENTS, INC).

General procedure for α-glucosidase inhibition assay 

The inhibition rate was determined at 37ºC in 0.067 
M K2HPO4/KH2PO4 buffer (pH 6.8).The reaction 
mixture contained 4 μL of enzyme solution, 40 μL 
of inhibitor and 20 μL of substrate. p-Nitrophenyl-α-
D-glucopyranoside, the substrate, and α-glucosidase 
(Baker’s yeast) were purchased from Sigma Chemical 
Co. (St Louis, MO, USA). One mM acarbose (extracted 
from Glucobay tablets, Bayer Pharmaceuticals 
Corporation) was tested as a positive control. Both the 
inhibitor and substrate were first dissolved in dimethyl 
sulfoxide (DMSO) and then diluted with 0.067 M 
K2HPO4/KH2PO4 buffer so that the final concentration 
of DMSO was 10%. The enzymatic reaction was 
started after incubation of the enzyme (0.04 units/mL) 
for 30 min in the presence of the inhibitor (0.1 mM) 
by the addition of substrate (0.5 mM). The mixture 
was incubated at 37ºC for 5 min, and the reaction was 
quenched by the addition of 0.1 M Na2CO3 (pH 9.8).
The absorption at 405 nm was measured immediately 
and served as the relative rate for the hydrolysis of the 
substrate. All experiments were carried out in triplicate.

Synthesis of compound 4 (33)

Synthesis of compound 5 

Compound 4 (500 mg, 1.4 mmol) and paraform (85 mg, 
2.8 mmol) in THF (20 mL) were refluxed for 1 h in the 
presence of H2SO4. The solvent was evaporated under 
reduced pressure to produce a white powder. The white 
powder was dissolved in CHCl3. The CHCl3 phase was 
extracted with brine and water and dried with Na2SO4. 
The solvent was evaporated to produce 5.

General procedure for the synthesis of compound 6

5 (100 mg, 0.3 mmol) and variant aldehydes (0.45~0.9 
mmol) in dry methanol were refluxed in the presence 
of Na2CO3 (10 mg, 0.09 mmol). After completion of 
the reaction, the mixture was diluted with CHCl3 and 
washed with water. The organic phase was evaporated 
in vacuo to produce the corresponding product by flash 

chromatography or crystallization from methanol.
 6a Yield 89%; m.p.: 153.8~156.5ºC; IR 2939, 2847, 
1757, 1643, 1449, 1165, 1101, 1029, 941, 900 cm-1; 
1H-NMR (400MHz, CDCl3): δ 7.77 (2H, d, J = 7.5Hz), 
7.38 (1H, t, J = 7.3Hz), 7.30 (2H, t, J = 7.3Hz), 7.10 
(1H, s), 6.97 (1H, dd, J = 10.0, 15.6Hz), 6.23 (1H, d, J 
= 15.6Hz), 5.95 (1H, s), 4.93 (1H, d, J = 6.5Hz), 4.81 
(2H, od), 4.57 (1H, s), 4.06 (1H, d, J = 11.2Hz), 3.50 
(1H, dd, J = 4.6, 13.2Hz), 3.46 (1H, d, J = 11.2Hz), 2.50 
(1H, dd, J = 1.6, 13.7Hz), 2.24 (1H, m), 2.04 (1H, m), 
1.76 (1H, m), 1.64 (2H, om), 1.47 (1H, br), 1.42 (3H, s), 
1.31 (1H, m), 1.22 (1H, m), 1.14 (1H, m), 0.97 (3H, s); 
13C-NMR (100.6MHz, CDCl3): δ 168.8, 147.8, 147.6, 
137.5, 135.5, 133.3, 130.4, 128.8, 128.7, 127.7, 127.1, 
113.0, 109.6, 87.7, 79.8, 69.1, 61.8, 54.5, 38.7, 37.7, 
37.3, 36.3, 25.8, 21.8, 20.9, 16.0. HRMS m/z: [M+Na]+ 
455.2189 (calcd.455.2198).
 6b Yield 87%; m.p.: 187.0~189.4ºC; IR: 2940, 2847, 
1752, 1645, 1596, 1462, 1300, 1245, 1165, 1100, 1029, 
939, 752 cm-1; 1H-NMR (400MHz, CDCl3): δ  8.18 (1H, 
dd, J = 1.2, 8.0Hz), 7.28 (1H, m), 7.13 (1H, s), 7.01 (1H, 
t, J = 7.6Hz), 6.92 (1H, dd, J = 10.1, 15.8Hz), 6.89 (1H, 
d, J = 8.4Hz), 6.5 (1H, s), 6.29 (1H, d, J = 15.6Hz), 
4.95 (1H, d, J = 6.4Hz), 4.80 (2H, om), 4.57 (1H, s), 
4.06 (1H, d, J = 11.2Hz), 3.87 (3H, s), 3.50 (1H, dd, J 
= 4.4, 8.8Hz), 3.46 (1H, d, J = 11.6Hz), 2.49 (1H, m), 
2.46 (1H, d, J = 10Hz), 2.26 (1H, m), 2.06 (1H, m). 1.79 
(1H, m), 1.64~1.57 (2H, om), 1.41 (3H, s), 1.30 (1H, m), 
1.21~1.13 (2H, om), 0.96 (3H, s); 13C-NMR (100.6MHz, 
CDCl3): δ 168.9, 157.3, 147.9, 147.4, 136.9, 136.1, 
131.5, 130.3, 126.4, 122.3, 121.8, 121.1, 110.5, 109.6, 
106.9, 87.7, 79.8, 69.1, 61.8, 55.6, 38.7, 37.7, 37.3, 
36.3, 25.8, 21.8, 20.9, 16.0.
 6c Yield 57%; m.p.: 175.0~176.4ºC; IR 2941, 2849, 
1742, 1601, 1565, 1525, 1366, 1165, 1100, 1063, 940, 
810 cm-1; 1H-NMR (400MHz, CDCl3): δ  7.70 (2H, d, J 
= 8.8Hz), 7.09 (1H, s), 6.84 (1H, dd, J = 10.1, 15.8Hz), 
6.70 (2H, d, J = 8.8Hz), 6.21 (1H, d, J = 15.8Hz), 5.90 
(1H, s), 4.94 (1H, d, J = 6.4Hz), 4.81 (2H, od), 4.58 (1H, 
s), 4.06 (1H, d, J = 11.2Hz), 3.51 (1H, om), 3.43 (1H, 
d, J = 11.2Hz), 3.0 (6H, od), 2.49 (1H, d, J = 13.5Hz), 
2.36 (1H, d, J = 10Hz), 2.26 (1H, m), 2.10 (1H, m). 1.79 
(1H, m), 1.65~1.57 (2H, om), 1.41 (3H, s), 1.28~1.13 
(3H, om), 0.96 (3H, s); 13C-NMR (100.6MHz, CDCl3): 
δ 169.4, 150.5, 148.0, 144.8, 135.7, 135.2, 132.2, 130.4, 
124.2, 122.1, 121.4, 114.6, 111.9, 109.6, 87.7, 79.8, 
69.1, 61.8, 34.3, 40.1, 38.6, 37.7, 37.2, 36.3, 25.8, 21.8, 
20.8, 16.1.
 6d Yield 69%; m.p.: 164.8~170.2ºC; IR: 2942, 
2847, 1750, 1638, 1599, 1507, 1233, 1161, 1099, 1028, 
941, 892 cm-1; 1H-NMR (400MHz, CDCl3): δ 7.83 (2H, 
om), 7.11 (3H, om), 6.98 (1H, dd, J = 10.1, 15.8Hz), 6.23 
(1H, d, J = 15.8Hz), 5.9 (1H, s), 4.94 (1H, d, J = 6.4Hz), 
4.82 (2H, od), 4.56 (1H, s), 4.06 (1H, d, J = 11.2Hz), 
3.51 (1H, om), 3.46 (1H, d, J = 11.2Hz), 2.49 (1H, d, 
J = 13.6Hz), 2.46 (1H, d, J = 10.0Hz), 2.26 (1H, m), 
2.06 (1H, m), 1.78 (1H, br), 1.61 (2H, om), 1.42 (3H, s), 
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1.31 (1H, m), 1.22 (1H, m), 1.14 (1H, m), 0.97 (3H, s); 
13C-NMR (100.6MHz, CDCl3): δ 168.6, 164.0, 161.5, 
147.8, 147.1, 137.5, 135.5, 132.3, 129.5, 126.8, 121.6, 
116.0, 115.8, 111.8, 109.6, 87.7, 79.7, 69.1, 61.8, 54.3, 
38.7, 37.7, 37.3, 36.3, 25.8, 21.8, 20.8, 16.1.
 6e Yield 90%; m.p.: 198.2~199.7ºC; IR 2953, 2939, 
2849, 1758, 1637, 1488, 1458, 1161, 1097, 1043, 1023, 
942, 891, 811 cm-1; H-NMR (400MHz, CDCl3): δ 7.71 
(2H, d, J = 8.8Hz), 7.36 (2H, d, J = 8.8Hz), 7.10 (1H, 
s), 6.99 (1H, dd, J = 10.1, 15.6Hz), 6.23 (1H, d, J = 
15.8Hz), 5.92 (1H, s), 4.94 (1H, d, J = 6.4Hz), 4.81 (2H, 
od), 4.56 (1H, s), 4.06 (1H, d, J = 11.2Hz), 3.51 (1H, 
dd, J = 4.4, 12.8Hz), 3.46 (1H, d, J = 11.2Hz), 2.50 (1H, 
m), 2.46 (1H, d, J = 10Hz), 2.29 (1H, m), 2.08 (1H, m). 
1.79 (1H, m), 1.63~1.58 (2H, om), 1.42 (3H, s), 1.32 
(1H, m), 1.22~1.11 (2H, om), 0.96 (3H, s); 13C-NMR 
(100.6MHz, CDCl3): δ 168.5, 147.82, 147.86.
 6f Yield 77%; m.p.: 168.4~170.2ºC;  IR 2970, 2941, 
2847, 1761, 1628, 1443, 1261, 1101, 1030, 944, 892 
cm-1; 1H-NMR (400MHz, CDCl3): δ 8.25 (1H, d, J = 
7.7Hz), 7.41 (1H, d, J = 7.8Hz), 7.31 (1H, m), 7.24 (1H, 
m), 7.22 (1H, s), 7.00 (1H, dd, J = 10.0, 15.8Hz), 6.45 
(1H, s), 6.25 (1H, d, J = 15.8Hz), 4.9 (1H, d, J = 6.4Hz), 
4.8 (2H, od), 4.56 (1H, s), 4.06 (1H, d, J = 11.2Hz), 3.51 
(1H, dd, J = 4.4, 12.8Hz), 3.47 (1H, d, J = 11.2Hz), 2.50 
(1H, d, J = 13.6Hz), 2.38 (1H, d, J = 10.1Hz), 2.24 (1H, 
m), 2.07 (1H, m), 1.78 (1H, m), 1.61 (2H, om), 1.42 
(3H, s), 1.31~1.14 (3H, om), 0.97 (3H, s); 13C-NMR 
(100.6MHz, CDCl3): δ 168.5, 148.5, 147.8, 138.1, 
135.8, 134.1, 131.9, 131.0, 129.7, 129.6, 127.5, 127.2, 
121.5, 109.7, 105.2, 87.7, 79.7, 69.1, 61.8, 54.2, 38.7, 
37.7, 37.2, 36.2, 25.8, 21.8, 20.8, 16.1.
 6g Yield 77%; m.p.: 179.3~182.7ºC; IR 2941, 2878, 
2847, 1762, 1638, 1582, 1474, 1425, 1163, 1099, 1030, 
943, 892 cm-1; 1H-NMR (400MHz, CDCl3): δ 7.73 
(1H, s), 7.67 (1H, d, J = 7.5Hz), 7.30 (2H, om), 7.11 
(1H, s), 7.00 (1H, dd, J = 10.0, 15.6Hz), 6.24 (1H, d, J 
= 15.6Hz), 5.89 (1H, s), 4.94 (1H, d, J = 6.4Hz), 4.82 
(2H, od), 4.56 (1H, s), 4.06 (1H, d, J = 11.2Hz), 3.51 
(1H, dd, J = 4.4, 12.9Hz), 3.47 (1H, d, J = 11.2Hz), 2.50 
(1H, d, J = 12.3Hz), 2.46 (1H, d, J = 10.0Hz), 2.24 (1H, 
m), 2.08 (1H, br), 1.78 (1H, m), 1.63 (2H, om), 1.42 
(3H, s), 1.31 (1H, m), 1.22~1.14 (2H, om), 0.97 (3H, s); 

13C-NMR (100.6MHz, CDCl3): δ 168.8, 148.7, 148.2, 
138.6, 135.8, 135.4, 135.1, 130.43, 130.40, 129.2, 
128.8, 128.0, 122.0, 111.8, 110.1, 88.1, 80.1, 69.5, 62.2, 
54.7, 39.2, 38.1, 377, 36.7, 26.2, 22.2, 21.3, 16.5.
 6h Yield 85%; m.p.: 203.2~203.8ºC; IR 2942, 2851, 
1753, 1642, 1495, 1447, 1259, 1038, 940, 891 cm-1; 
1H-NMR (400MHz, CDCl3): δ 7.47 (1H, d, J = 1.4Hz), 
7.15 (1H, dd, J = 1.4, 8.1Hz), 7.08 (1H, s), 6.95 (1H, dd, 
J = 10.1, 15.6Hz), 6.83 (1H, d, J = 8.1Hz), 6.22 (1H, d, 
J = 15.6Hz), 6.01 (2H, s), 5.89 (1H, s), 4.9 (1H, d, J = 
6.3Hz), 4.82 (1H, d, J = 6.3Hz), 4.80 (1H, s), 4.57 (1H, 
s), 4.06 (1H, d, J = 11.2Hz), 3.51 (1H, m), 3.45 (1H, d, 
J = 11.1Hz), 2.49 (1H, dd, J = 1.5, 13.7Hz), 2.38 (1H, d, 
J = 10.0Hz), 2.24 (1H, br), 2.05 (1H, m), 1.76 (1H, m), 
1.64~1.57 (2H, om), 1.42 (3H, s), 1.28 (1H, m), 1.22 (1H, 
m), 1.13 (1H, m), 0.96 (3H, s); 13C-NMR (100.6MHz, 
CDCl3): δ 169.0, 149.1, 148.9, 148.6, 147.0, 137.6, 
136.4, 128.4, 126.6, 122.5, 113.9, 110.6, 110.4, 109.3, 
102.2, 88.4, 80.5, 68.0, 62.5, 55.0, 39.4, 38.4, 38.0, 
37.0, 26.5, 22.57, 21.6, 16.8.
 6i Yield 75%; m.p.: 203.6~205.0ºC; IR 2943, 2851, 
1761, 1636, 1573, 1503, 1457, 1422, 1332, 1248, 
1156, 1121, 1027, 937, 896 cm-1; 1H-NMR (400MHz, 
CDCl3): δ 7.09 (1H, s), 7.02 (2H, s), 6.94 (1H, dd, J = 
10.1, 15.8Hz), 6.23 (1H, d, J = 15.8Hz), 5.87 (1H, s), 
4.93 (1H, d, J = 6Hz), 4.81 (2H, om), 4.5 (1H, s), 4.06 
(1H, d, J = 11.6Hz), 3.90 (9H, s), 3.50 (1H, m), 3.46 
(1H, d, J = 11.6Hz), 2.49 (1H, d, J = 12.4Hz), 2.4 (1H, 
d, J = 10.0Hz), 2.26 (1H, m), 2.01 (1H, m), 1.79 (1H, 
m), 1.64~1.57 (2H, o0m), 1.42 (3H, s), 1.31 (1H, m), 
1.22~1.14 (2H, om), 0.96 (3H, s); 13C-NMR (100.6MHz, 
CDCl3): δ 168.7, 153.2, 147.9, 147.0, 139.0, 137.3, 
135.5, 128.8, 126.5, 121.6, 113.1, 109.6, 107.6, 87.7, 
79.5, 69.1, 61.7, 61.0, 56.2, 54.3, 38.7, 37.7, 37.3, 36.3, 
25.8, 21.8, 20.8, 16.0.
 6j A mixture of two isomers (1/3); 1H-NMR 
(400MHz, CDCl3): δ 7.83 (0.3H, s), 7.52 (0.3H, d, J = 
1.2Hz), 7.50 (0.7H, d, J = 1.2Hz), 7.09 (0.7H, s), 7.03 
(0.7H, d, J = 3.6Hz), 6.99 (03H, dd, J = 10.1, 15.6Hz), 
6.95 (0.7H, dd, J = 10.1, 15.6Hz), 6.55 (0.7H, m), 6.51 
(0.3H, d, J = 3.2Hz), 6.49 (0.3H, m), 6.35 (0.3H, s), 
6.27 (0.3H, d, J = 15.6Hz), 6.22 (0.7H, d, J = 15.6Hz), 
6.01 (0.7H, s), 4.93 (1H, d, J = 6.4Hz), 4.81 (2H, om), 
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4.57 (0.3H, s), 4.56 (0.7H, s), 4.06 (1H, d, J = 11.2Hz), 
3.51 (1H, m), 3.46 (1H, d, J = 11.2Hz), 2.49 (1H, m), 
2.36 (1H, d, J = 10Hz), 2.26 (1H, m), 2.07 (1H, m). 
1.76 (1H, m), 1.63~1.58 (2H, om), 1.41 (3H, s), 1.28 
(1H, m), 1.22~1.13 (2H, om), 0.96 (3H, s); 13C-NMR 
(100.6MHz, CDCl3): δ 168.3, 168.0, 149.7, , 87.7, 
79.7, 69.1, 61.8, 54.3, 38.7, 37.7, 37.2, 36.3, 25.8, 21.8, 
20.149.3, 147.88, 147.84, 147.3, 145.6, 144.3, 143.9, 
138.0, 137.3, 134.1, 132.3, 128.9, 127.0, 122.1, 121.8, 
114.9, 114.5, 113.1, 112.4, 109.6, 101.8, 101.38, 16.0.

Results and Discussion

C o m p o u n d  4  w a s  o b t a i n e d  b y  r e f l u x i n g 
andrographolide (3) in a mixture of xylene and pyridine 
in the presence of Al2O3. Compound 5 was obtained in 
an excellent yield by heating 4 and paraform in THF in 
the presence of H2SO4. Compound 6 was synthesized 
by vinylogous aldol reaction of 4 and varied aldehydes 
(Scheme 1, Table 1). The structure of 6 was elucidated 
by NMR and IR spectral analysis. Conjugated olefinic 
protons in 1H-NMR spectrum of 6 were detected at δ 
6.8 (H-11), 6.1 (H-12), 7.2 (H-14) and about δ 5.9~6.5 
(H-21). The signal of H-15 (δ 4.8) disappeared in 
1H-NMR of 6. Based on the coupling constant JH-11,H-12 

(15.6Hz), the conformation of double bonds Δ11(12)  was 
assumed to be E. The geometry of double bonds (Δ15(21)) 
in 6 was confirmed to be a Z conformation according 
to previous research (32). Of the 6 compounds, 6j was 
a mixture of two isomers (1/3), which differed from 
the corresponding compound 7j. The reason for the 
difference has yet to be indicated.
 Bioactivity results showed that compound 6 
displayed selective α-glucosidase inhibitory activity. 
The ketal derivative was able to enhance α-glucosidase 
inhibitory activity (Table 1). The bioactivities of 
6a~g were better than those of their corresponding 
compounds 7a~g (31,32). 6c is more effective than 
other 6 compounds. However, the ketal derivatives 6h 

and 6i of 7h and 7i displayed a lower IC50 value among 
the compounds concerned. The above results suggested 
that the ketal of hydroxyls at C-3 and C-19 favored 
inhibitory activity.
 Comparing the activities of 6 indicated that mono-
substitution in the aromatic ring displayed a higher 
affinity than disubstitution or trisubstitution. On the 
other hand, substitution of a simple chloro group at the 
3-position of the aromatic ring was more effective than 
at the 2- or 4-position. Introduction of a strong electron-
donor displayed the best inhibitory activity.
 In α-glucosidase inhibitory activity testing, 
acarbose served as a positive control. The percentage 
of inhibition of 1 mM acarbose was 56.5%. Most 
15-alkylidene andrographolide derivatives (6 and 7) 
displayed better activity than acarbose, which has 
proven useful in reducing peak postprandial blood 
glucose (PPBG) concentrations.
 In summary, a new ser ies of 15-alkyl idene 
andrographolide derivatives were designed and 
synthesized as α-glucosidase inhibitors. Their structures 
were identified by IR and NMR spectral analysis. 
Several products exhibited good α-glucosidase 
inhibition activity. Among the inhibitors, the best was 
6c (8.3 μM), which should prove useful in developing 
new drugs such as diabetes, anti-tumor, and anti-
antiviral medications.
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