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Introduction

Hypoxic tumor cells in a solid tumor cause resistance 
to radiotherapy and chemotherapy (1-6). Traditional 
chemotherapeutic agents have no or little effect on 
hypoxic tumor cells. Bioreductive prodrugs can 
effectively kill this kind of cell. One of the most 
promising bioreductive prodrugs is quinoxaline 
1,4-dioxide (7-10), and the known compound 3-amino-
2-carbonitrile quinoxaline 1,4-dioxide (TPZCN) is an 
important lead compound with beneficial biological 
activity in vitro (11). The 3-methyl-2-phenylthio-
quinoxaline 1,4-dioxides were reported to have 
several forms of beneficial biological activity such as 
antimycobacterial and anticandidal activity (12-14). 
There are, however, no reports on the antitumor activity 
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of this kind of compound. 3-phenyl-quinoxaline 
1,4-dioxide derivatives should be effective antitumor 
agents in hypoxia since they contain the quinoxaline 
1,4-dioxide pharmacore. Therefore, a series of novel 
3-phenyl-2-thio-quinoxaline 1,4-dioxides were 
synthesized and screened for their cytotoxic activity in 
hypoxia and in normoxia.

Materials and Methods

Chemistry

The synthetic pathway of the target compounds 
20-59 is shown in Scheme 1. Compounds 12-16 
were prepared by reaction of 2-nitroanilines with 
5% sodium hypochlorite solution in the presence 
of KOH. Cyclocondensation of compounds 12-16 
wi th appropr ia te 2-e thyl th io (or phenyl thio)-
1-phenyl e thanone by the wel l -known Biure t 
reaction afforded 3-phenyl-2-ethylthio/phenylthio-
quinoxaline 1,4-dioxides 29-51 (15). Compounds 
29-51 were oxid ized by d i fferent amounts of 
m-chloroperoxybenzoic acid (MCPBA) to produce 
target compounds 3-phenyl-2-ethylsulfinyl-quinoxaline 
1,4-dioxides 52-54 or 3-phenyl-2-ethylsulfonyl/ phenyl 
sulfonyl-quinoxaline 1,4-dioxides 55-69, respectively. 
All of the prepared compounds were confirmed by 
spectral data including IR, 1H NMR, and MS (16).

X-ray analysis

In order to identify the structures of the class of 
compounds, the single-crystal structure of 55 was 
determined by X-ray crystallography as illustrated 
in Figure 1. In 55 , a l l H atoms were placed in 
geometrically idealized positions. The quinoxaline 
1,4-dioxide system is almost planar. The quinoxaline 
1,4-dioxide and phenyl planes are approximately 
perpendicular, with a dihedral angle of 85.8.

Biological evaluation

All of the prepared compounds were evaluated for their 
cytotoxic activity in vitro on human leukaemia cell line 
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HL-60, human esophagus cancer cell line ECA-109, 
human prostate cancer cell PC-3, human gastric-
carcinoma cell line SGC-7901, and human breast 
cancer cell line MCF-7 in hypoxia and in normoxia 
according to reported methods (17). The IC50 values of 
the tested compounds in normoxia and in hypoxia are 
summarized in Table 1.

Results and Discussion

SAR studies

As shown in Table 1, half of the tested compounds 
displayed higher cytotoxic activity on all tested cancer 
cell lines than the reference drug both in hypoxia and 
in normoxia. Obviously, the cytotoxic potency of 
tested compounds on these five cancer cell lines was 
highly dependent on structures of the 2-position side 
chains. When 2-position was occupied by an ethylthio 
group (e.g., 29-42) or phenylthio group (e.g., 43-51), 
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29 R1=R2=H, R3=CH2CH3;              
31 R1=H, R2=Cl, R3=CH2CH3;       
33 R1=H, R2=CH3, R3=CH2CH3;     
35 R1=Cl, R2=H, R3=CH2CH3;        
37 R1=Cl, R2=Cl, R3=CH2CH3;       
39 R1=CH3, R2=H, R3=CH2CH3;     
41 R1=CH3, R2=Cl, R3=CH2CH3;    
43 R1=R2=H, R3=Ph;                         
45 R1=CH3, R2=H, R3=Ph;                
47 R1=Cl, R2=Cl, R3=Ph;                   
49 R1=H, R2=Br, R3=Ph;                   
51 R1=CH3, R2=Br, R3=Ph;               
53 R1=Cl, R2=H, R3=CH2CH3;          
55 R1=R2=H, R3=CH2CH3;                
57 R1=CH3, R2=H, R3=CH2CH3;      
59 R1=H, R2=F, R3=CH2CH3;           
61 R1=CH3, R2=F, R3=CH2CH3;      
63 R1=Cl, R2=Cl, R3=CH2CH3;       
65 R1=H, R2=Br, R3=CH2CH3;        
67 R1=CH3, R2=Br, R3=CH2CH3;    
69 R1=R2=H, R3=Ph;

30 R1=H, R2=F, R3=CH2CH3;
32 R1=H, R2=Br, R3=CH2CH3;
34 R1=H, R2=OCH3, R3=CH2CH3;
36 R1=Cl, R2=F, R3=CH2CH3;
38 R1=Cl, R2=Br, R3=CH2CH3;
40 R1=CH3, R2=F, R3=CH2CH3;
42 R1=CH3, R2=Br, R3=CH2CH3;
44 R1=Cl, R2=H, R3=Ph;
46 R1=H, R2=Cl, R3=Ph;
48 R1=CH3, R2=Cl, R3=Ph;
50 R1=Cl, R2=Br, R3=Ph;
52 R1=R2=H, R3=CH2CH3;
54 R1=CH3, R2=H, R3=CH2CH3;
56 R1=Cl, R2=H, R3=CH2CH3;
58 R1=OCH3, R2=H, R3=CH2CH3;
60 R1=Cl, R2=F, R3=CH2CH3;
62 R1=H, R2=Cl, R3=CH2CH3;
64 R1=CH3, R2=Cl, R3=CH2CH3; 
66 R1=Cl, R2=Br, R3=CH2CH3;
68 R1=H, R2=CH3, R3=CH2CH3;

Scheme 1. The synthetic route of the compounds 29–69. Reagents and conditions: (a) K2CO3, THF, refl ux, 12 h; (b) NH3; (c) 2.0 
equiv of MCPBA, Chloroform; (d) 4.0 equiv of MCPBA, Chloroform.
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the compound showed almost no or weak activity. For 
the 2-phenylthio series, the substituents both at the 
5-position of quinoxaline and on the 3-benzene ring 
can slightly affect cytotoxic activity. Compounds with 
electron-withdrawing substituents (44, 46, 47, 50) 
such as fluorine, chlorine, and bromine showed higher 
activity than those with electron-donating substituents 
(45). On the other hand, 3-phenyl-2-ethylsulfinyl/
ethylsulfonyl/phenyl-sulfonyl-quinoxaline 1,4-dioxides 
(52-69) exhibited impressive cytotoxic activity on most 
tested cancer cell lines. Most traditional antitumor 
agents are useless on hypoxic cells, while the current 
class of compounds showed higher activity both in 
hypoxia and in normoxia may thus be effective agents 
in tumor therapy.

Mechanism studies
 
Further study of the mechanisms of cytotoxic activity 

         Cytotoxicity (IC50, μΜ )a
Comd.
           K562           Eca109          SGC7901              PC3        SMMC7721

   Hb   Nc       H     N         H     N         H     N         H     N
29 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
30 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
31 >50 >50     >50   >50       >50   >50       >50   44.9       >50   >50
32 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
33 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
34 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
35   18.6 >50     >50   >50       >50   >50       >50   >50       >50   >50
36 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
37     6.5   27.8       11.9       8.8         43.1     29.1         39.6     34.8       >50   >50
38   10.0 >50     >50     30.6         38.3     19.6       >50   >50         34.9   >50
39 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
40 >50 >50     >50   >50       >50   >50       >50   >50       >50   >50
41 >50 >50     >50   >50       >50   >50       >50   >50       >50     40.4
42 >50   38.5     >50   >50       >50   >50         46.7   >50       >50   >50
43   47.6   23.2     >50   >50       >50   >50         46.1       4.6       >50   >50
44   12.9     3.5       18.8     38.2         35.5     33.2         18.0   >50       >50     28.2
45 >50   45.8     >50   >50       >50   >50       >50   >50       >50   >50
46   15.0   14.9       26.2     19.9       >50     35.9         40.0     43.6         33.1     38.9
47     4.7     3.9     13.5       2.6         14.2     12.5           4.9       4.3         21.4       9.9
48   12.7     0.5     >50      43.4       >50     32.4       >50     16.1         35.9   >50
49     5.0   10.0     >50   >50       >50     34.2         29.3     23.0         31.4     38.7
50     3.0     3.2       23.9     31.8         27.9     18.3         39.0     42.3       >50   >50
51     6.2     6.5       26.0     49.4         41.8     11.3         31.1     15.5       >50     19.0
52     1.6     0.6         8.6     23.3           5.8       5.3           7.0       6.2         31.3     19.3
53     1.2     0.3         6.0       7.6           3.1       1.7           3.4       2.4           8.8       3.6
54     1.2     1.3       10.9     14.1         13.0     22.7           7.0     11.4           5.3       4.2
55     1.3     1.0         4.7       9.7           6.5     11.8           2.5       5.1       >50     29.2
56     1.5     0.6         3.4       6.4           2.9       1.3           8.4       4.1           4.7       5.9
57     1.8     1.2         5.2       6.8           6.9       8.2           4.3       2.3         13.5       6.3
58     1.6     1.3         9.6       3.3           5.2       5.5           6.8       3.8         18.5       6.0
59     1.1     1.3         7.0       9.5           8.8       2.9           0.9       1.0           1.6       0.7
60     3.2     0.1         5.2       5.0           2.2       4.9           0.7       0.8           2.6       3.7
61     1.0     1.4       10.6       4.4           5.1       6.2           4.4       1.8         12.0       7.5
62     1.8     0.5         9.7       7.9           7.9       9.7           0.7       5.3         11.9       5.0
63     3.7     4.7         4.9       3.1           1.8       1.4           1.6   >50           2.6       3.1
64     3.8     4.2         4.0       1.4           4.5       2.9           0.5       3.2         10.2     12.2
65     0.8     2.5         1.8       1.2           3.1       0.6         13.3       3.1           2.2       4.6
66     0.8     0.6         6.2       2.2           1.5       1.5         13.8       1.0           0.1     16.1
67     0.2     0.3         6.4       0.5           8.9       6.8           5.0       8.7           2.2       3.5
68     1.9     0.7         7.1       3.1           3.6     20.8         13.9       1.1           8.1       8.3
69     1.2     0.5         4.7       4.4           3.4       9.4           7.6       1.9         14.4     16.3

Table 1. Cytotoxicity of quinoxaline 1,4-di-N-oxides derivatives (29-69) on fi ve human cancer cell lines in 
hypoxia and in normoxia in vitro

aEach experiment was independently performed three times; bH=Hypoxia: 3% oxygen; cN=Normoxia: 20% oxygen 

Figure 1. Single-crystal structure of 55.
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in hypoxia was performed with one potent compound 
(67) in K562 cells. K562 cells were treated with tested 
compound for 0 h, 6 h, 12 h or 24 h respectively, and then 
apoptosis, the mitochondrial membrane potential (ΔΨm), 
and protein expression were determined according to 
reported methods (17). The results are shown in Figures 

2-4. All experiments were repeated three times.
K562 cells were cultured in complete medium with 

6.0 μM 67 for 0-48 h in 3% O2. Every six hours the 
cells were collected and the apoptotic percentage was 
analyzed by flow cytometry (Figure 2). As shown in 
Figure 2, an apoptotic phenomenon was observed at 12 

Figure 4. Protein expressions of HIF-1α, P38, and Bax in K562 cells treated with 6.0 μM compound 67 in hypoxia for 0.5, 1, 4, 
8, 12 and 24 h. Each lane was loaded with 40 μg of protein.

Figure 2. Compound 67 induced apoptosis in K562 cells. K562 cells were treated with 6.0 μM 67 in hypoxia for 0, 12, 24 
and 48 h. Apoptosis was assessed by Annexin V-FITC/Propidium iodide (PI) staining.

Figure 3. Compound 67 induced ΔΨm loss in K562 cells. K562 cells were treated with 6.0 μM 67 in hypoxia for 0, 6, 12 and 
24 h. ΔΨm loss was assessed by JC-1 staining in which mitochondria depolarization is indicated by an increase in the green-to-
red fl uorescence intensity ratio.
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h after cells were exposed to 67. After K562 cells were 
incubated with 67 for 0, 12, 24 and 48 h, the percentage 
of apoptotic cells was 11.9%, 29.5%, 37.6% and 87.6%, 
respectively. This increase occurred in a time-dependent 
manner, indicating that the apoptotic pathway was 
involved in the mechanisms of compound 67-mediated 
cytotoxic activity.

To investigate the pathway of apoptosis induced by 
tested compounds, ΔΨm loss and protein expression 
of HIF-1α, Bax, and P38 in K562 cells treated with 
6.0 μM 67 for 0-24 h in hypoxia were determined. 
With JC-1 staining, mitochondria depolarization is 
specifically indicated by a fluorescence emission 
shift from red to green. ΔΨm loss in K562 cells was 
reduced by 67 after 0-24 h treatment; corresponding 
data are shown in Figure 2. Compared to the control, 
K562 cells treated with 67 exhibited a mass of green 
fluorescence, suggesting that 67 might possess highly 
potent cytotoxic activity via a mitochondrial pathway.

P38, Bax, and HIF-1α were the key proteins 
involved in cell apoptosis and DNA damage. The 
expression of P38, Bax, and HIF-1α in K562 cells 
treated with 67 was performed by Western blot analysis. 
As shown in Figure 3, 6.0 μM 67 increased P38 and 
Bax levels in K562 cells after 24 h of exposure in 
hypoxia and reduced the HIF-1α protein level. The data 
obtained confirmed that higher cytotoxicity of 67 was 
related to the P38 and Bax-mediated apoptosis pathway.

Conclusions

In summary, a new series of novel 2-substituted-phenyl-
3-ethylthio/ethylsulfinyl/ethyl sulfonyl/phenylthio/
phenylsulfonyl-quinoxaline 1,4-dioxides were 
synthesized and screened for their antitumor activity 
in vitro on five cancer cell lines in hypoxia and in 
normoxia. Half of the tested compounds showed higher 
antitumor activity both in hypoxia and in normoxia. 
When treated with compound 67, K562 cells exhibited 
overexpression of P38 and Bax, and K562 cells also 
induced down-regulation of HIF-1α, suggesting 
modulation of protein and mitochondria pathways 
involved in the anti-cancer activity of compound 67.
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